LINEAR ACTUATOR TECHNOLOGY

ML Series Miniature Linear Actuator

Product Overview	2-3
Applications	9
Technical Data	10
Dimensional Data	11
Performance Data	12-13
MLB Series	14
Motor Options	15

MLC Series	24
MLD Series	
Building Your ML Actuator	
Ordering Options	29
Accessories	32
Technical Selection Guide	42
Application Data Sheet	47

ML Series Overview

DOVETAIL CLAMPS - secure unit on all (4) surfaces. Two screw design helps ensure quick and easy alignment during installation.

MAGNET - Built-in magnet accommodates home, limit and position sensors.

BRASS INSERTS - For system mounting and integrity.

LEAD SCREW - Large diameter, antifriction coated screw allows for longer lengths by decreasing screw whip and increasing column strength.

CERAMIC COATED BODY – For corrosion resistance and long life.

"DOVETAIL" STYLE CARRIAGE - PTFE polymer material has fourteen plain bearing surfaces providing low friction for smooth and quiet linear motion. Notched "dovetail" carriage provides easier alignment and assembly.

ANTI-BACKLASH NUT (Optional) - for applications which require high bi-directional accuracy and repeatability.

THRUST BEARINGS - Duplexed back to back installation of deep groove ball bearings provides high stiffness and allows for increased thrust loads, rotational speed and repeatability.

MOTOR - Stepper motors available in standard NEMA 11, 14, 17, 23, metric frame sizes or add your own. Servo motors available in 40 & 60 mm motors.

ML ADVANTAGE

- Small, Compact Profile 28 x 32mm
- **Patent Pending SIMO[™] Process** ensures precision mounting, accurate installation and lightweight composition.
- Lead Screw Driven High accuracy and precise repeatability
- Multi-Axis Configurations
- Long Travel Lengths Up to 650mm

LINEAR GUIDE SUPPORTS - Provide increased load and moment capacities and overall rigidity to the system. Available single or dual rails with one or two runnerblocks per rail. **MOUNTING HOLES** - Carriage brackets feature extra mounting holes for ease of installation and multi-axis assemblies.

HOUSING - SIMO[™] process ensures precision mounting, accurate installation and lightweight composition.

SEAL STRIP - Ultra-wear-resistant MDS nylon prevents particulates or contaminants from entering or exiting actuator.

LEAD SCREW - 1mm, 2mm, 5mm, 10mm, 12mm, 16mm 25mm and 38mm leads.

INTERNAL COUPLING - Rigid polymer insert coupling for increased smoothness and minimal backlash.

MOTOR MOUNT - Specially constructed with an optimized length, resulting in an overall shorter system with PBC Linear™ brand stepper motors.

MOTOR MOUNT ADAPTER (MLC) - Adapter plate designed to fit any manufacturer's motor. Compensates for variations in pilot diameter, depth, shaft diameter, length and mounting screw patterns.

©2011 PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

- Patent Pending Machining Process
- High Precision Mounting Surfaces
- Tight Tolerances ± 0.025mm (0.001 in)

PBC Linear has revolutionized traditional machining with the patent pending SIMO[™] (Simultaneous Integral Milling Operation).

The typical aluminum extrusion process produces a natural bow, twist and variance. Costly straightening and aligning is traditionally used to combat this variance, resulting in a semi-straight aluminum extrusion that drives the cost up.

PBC's SIMO process uses synchronized cutters, eliminating built-in extrusion variances by machining all critical edges concurrently in one pass. This ensures tight tolerances, limited variance and a remarkably straight and repeatable surface at negligible additional cost!

ML Advantage

Using the machine tooled precision and rigid surfaces sustained by the SIMO[™] process, the ML's bridge gantry design can support 1 or 2 linear guides on the sides of the ML. These supports work together to increase load capacities and sustain stability while utilizing recirculating caged-ball technology to provide smooth and quiet linear motion guidance.

BRIDGE GANTRY DESIGN

See page 24 for details.

Machine tools are built on precision machined castings or weldments... Why shouldn't your actuator be built the same?

As tolerances get tighter, the cost of machining with conventional processes increases dramatically over the SIMO process.

^{©2011} PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

Multi-Axis Mounting

ML actuators are designed to perform well in XY and other Cartesian arrangements. The actuator body forms a strong beam with higher moment loading capacity. Special dovetail slots on all sides allow the actuators to be mounted on their bottom surface or on either side.

Carriage brackets and special wedge mounting clamps allow for precise and rigid mounting arrangements. Linear guides can be installed on one or both sides of the actuator with one or two runner blocks on each rail for greater rigidity in gantry applications.

Multi-axis gantries can also be created by combining the ML with other PBC's actuators such as the PL or MT Series.

ML Applications

The ML miniature actuator has surpassed expectations and left the competition in the dust. Its combination of compactness and (60 lbf) 265 N pound thrust power gives this actuator an edge for automation applications where space is critical. Plus, the SIMO[™] machined rail surface and zero backlash lead screw assembly ensures accuracy and precision for syringe pump and optical control applications.

.....

©2011 PBC Linear[™], A Pacific Bearing Company. See back page for legal disclaimer.

Technical Data

ML SERIES - Carriage only.							
Size		mm	28 x 32	in	1.10 x 1.26		
Max. Load - Lite Preload - <i>anti-backlash</i> - Normal Preload - <i>anti-backlash</i> - Standard	Fx Fy	N	44 89 267 107	lbf	10 20 60 24		
	Fz		178		40		
	Mx		1.4		12.4		
Max. Moments	Му	Nm	1.4	lbf-in	12.4		
	Mz		1.4		12.4		
Bending Moment of Inertia	ly	cm4	2.4	in4	0.058		
(second moment of area)	lz	UIII	4.4		0.106		
See page 24 for te	chnical da	ta on line	ar guide su	pports			
Base Weight without Motor			0.06		0.13		
Add for 100 mm of stroke	Kg	0.15	lbf	0.34			
Total Carriage Mass		0.020		0.044			
Total Carriage Mass & Top Plate		0.059		0.130			
Coefficient of Friction			0	.19			
Max. Speed		m/s	1.9	in/s	75		
Max. Stroke Length			650		25.6		
Min. Stroke Length		mm	5	in	0.2		
Nominal Screw Diameter			10.0		0.375		
Max RPM		3000					
No Load Torque Nut - Lite Preload - <i>anti-ba</i> - Normal Preload - <i>anti</i> - Standard	cklash i-backlash	Nm	0.0565 0.106 0.007	lbf-in	0.50 0.94 0.062		
Linear Guide Supports - Single Linear Guide - Dual Linear Guides	Linear Guide Supports - Single Linear Guide - Dual Linear Guides				0.15 0.30		
Seal Strip - with Seal Strip - without Seal Strip		Nm	.028 0	lbf-in	0.25 0		
Screw Lead Accuracy*		mm/mm	.0006	in/in	.0006		
Bi-directional Repeatability (Sing - Anti-Backlash Nut - Standard Nut	+/- mm	0.02 076254	+/- in	0.0008 .003010			
Normal Operating Temperature	min	°C	98	°F	32		
(Wider ranges available)	max	0	18		176		

*Higher accuracies are available to .0001 mm/mm (in/in). Contact manufacturer for details. Specifications are subject to change without notice.

Fy _A	Fz_{A}		Mx _A	Mу _А	Mz _A -
Fy ⁺	Fz	+ .	Mx ⁺	My +	Mz

CENTER OF GRAVITY FOR MOMENT CALCULATIONS

EXTERNAL DOVETAIL EASY SKETCH

Dimensional Data

RECOMMENDED **OVERTRAVEL PER SIDE**

Knob or Hand Crank = 5mm Stepper Motor = 10mm Servo Motor = 20mm

HOW TO CALCULATE BODY LENGTH

1) Enter 19mm **BODY LENGTH CALCULATION TABLE** Examp/e 2) Select (5, 10 or 20mm) for overtravel on idle end 19 **IDLE END CAP = 19mm** 19 (1)(See recommended overtravel above.) OVERTRAVEL IDLE END (5, 10 or 20mm) 10 (2) 3) Specify stroke length in mm **STROKE LENGTH** 155 4) Select (51 or 71mm) for carriage length (3) 5) Select (5, 10 or 20mm) for overtravel on idle end CARRIAGE LENGTH (51 or 71mm) 71 (4) (See recommended overtravel above.) **OVERTRAVEL DRIVE END (5, 10 or 20mm)** 10 (5) 6) Add amounts together and enter SUBTOTAL (Add Amounts 1-5) + (6) 265 ENTER SUBTOTAL (mm) = 7) Enter TOTAL BODY LENGTH (Round to nearest 10mm) 8) When ORDERING enter TOTAL BODY LENGTH in **TOTAL BODY LENGTH** 7 270 (Round Subtotal to nearest 10mm) BODY LENGTH column. **ORDERING GUIDE** MLCO28D -0270 х хх х х х х х Nut Type Body Length Motor Location Configuration Series Leads 0 No external Rail AH 2 Standard Nut mm AG 2 MM AX 5 MM AJ 10 MM BD 12 MM 1 Rail + 1 Runner Block* 4 Anti-backlash (light preload) L R B 2 1 Rail + 2 Runner Block* screw driver 28 x 32 mm 3 2 Rail + 1 Runner Block/rail 4 2 Rail + 2 Runner Block/rail

©2011 PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

Performance Data

The load rating and system speed must both be accounted for when sizing a lead screw system. The nut threads and screw threads form a plane bearing system.

The PV limit of a polymer material is the point at which friction-generated heat can no longer be expelled at a rate to prevent the material from overheating. Such overheating while under stress can cause permanent deformation of the material. Ignoring how the system's speed and loading relate to the nut material's PV rating can lead to dramatically shorter thread life. The primary modes of failure for lead screw systems are wear and PV. By staying within the PV envelope of the screw and nut, one can ensure long life of the nut without premature wear.

PERFORMANCE Characteristics		LEAD SCREW mm (in)							
		38 (1.50)	25 (1.00)	10 (.400)	3 (.125)	1 (.039)			
Max, Travel Speed	mm/s (in/s)	1905 (75)	1270 (50)	508 (20)	159 (6.25)	50 (1.95)			
Screw Diameter	mm (in)	10 (0.375)	10 (0.375)	10 (0.375)	10 (0.375)	10 (0.375)			
Screw Efficiency (See	e formula to left)	81%	82%	77%	57%	26%			

 2π x Efficiency x 1000

 T_L (in-lbf) = Load (lbf) x Lead (in) 2π x Efficiency

LEAD SCREW 38mm (1.50") 10mm (.400") PITCH 25mm (1.00") 3mm (.125") 1 mm (.039")

^{©2011} PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

MLB Series (Integrated Motor)

- Includes motor, coupling and motor assembly
- Full stock of open and closed loop stepper motors and servo motors
- Available in NEMA 11,14,17,23
- Precision machined body
- Small, compact design
- High acceleration, speed and rigidity
- Pre-engineered and assembled for easy installation

MLB ORDERING GUIDE

MLB028D -	X	XX		X		X	X –	####
Series	Linear Guide Supports*	Lead		Nut Type		Seal Strip	# of Carriages	Body Length
lotor or Lead icrew Driven 28 x 32 mm	0 No External Rail 1 (1) Rail, (1) Runner Block - XY-2 Brk 2 (1) Rail, (2) Runner Blocks - XY-2 Br 3 (2) Rail, (2) Runner Blocks - XY-3 Brk 4 (2) Rail, (2) Runner Blocks - XY-3 Brk 5 (1) Rail, (1) Runner Block - XY-2 Brk 6 (1) Rail, (2) Runner Blocks - XY-2 Brk 7 No Seal Strip - XY-1 Brkt	AH 1mm t (R) AG 2mm t (R) AX 5mm t AJ 10mm 10mm t (L) AF 16mm t (L) AF 16mm AK 5.5 in 3.5 in	2 Stan 4 Anti- 6 Anti-	hdard Nut backlash (light prelo backlash (normal pre	ad) eload)	0 None 1 With Seal Strip & XY Bracket	1 Carriage 2 2 Carriages 3 3 Carriages 4 4 Carriages NOTE: Contact manufacturer before ordering multiple carriages.	(mm) See page 11 for body length calculation table EX: 90mm = 0090 250mm = 0250
	(L) – Leit (K) – Kight							
X	X	X		x		XX		0
Notor Location	Motor Make	Motor Frame	e Size	Motor Power		Motor Fea	tures	Configuration
S Straight L Left R Right B Bottom T Top	1 PBC Linear™ Open loop stepper motor	 B NEMA 11 (2 C NEMA 14 (3 F NEMA 17 (4 G NEMA 23 (5 	28mm) 35mm) 42mm) 56mm)	B Single Stack C Double Stack* D Triple Stack * not available with NEMA 14	00	Hybrid wiring (8 wires no encoders [hybrid w bi-polar or uni-polar]), flying leads, iring can be	0 Standard
	3 FASTech® EZI-Step BT with integral drive. Open loop stepper motor	F NEMA 17 (4 G NEMA 23 (5	42mm) 56mm)	A 1/2 Stack B Single Stack C Double Stack D Triple Stack	00	Bi-polar wiring, flying l	eads, no encoder	
	4 FASTech® EZI-Servo Closed loop stepper motor	B NEMA 11 (2	28mm)		01 03	2,000 resolution (puls 16,000 resolution (pul	e/rev) encoder (std) se/rev) encoder	
		F NEMA 17 (4 G NEMA 23 (5	42mm) 56mm)		02 04 05	10,000 resolution (pul 20,000 resolution (pul 32,000 resolution (pul	se/rev) encoder (std) se/rev) encoder se/rev) encoder	
	5 Omron [®] A/C, brushless servo motor	E Metric 40mr	n	F 50W G 100W	01 02 03 04 05 06 07	120V input, INC encod 120V input, INC encod 120V input, ABS enco 120V input, ABS encod 120V input, INC encod 240V input, INC encod 240V input, ABS encod	der, NO brake der, with brake der, NO brake der, With brake der, NO brake der, With brake der, NO brake	
FINAL PART #	MLBO28D - X	xx x	X	x - xx	08 XX	240V input, ABS enco	der, with brake	xx o

Motor Locations

Using universal motor mounts, PBC Linear's ML series mini-actuators give our customers the freedom for limitless mounting options. Straight (in-line), top, bottom or side motor mounting allows the ML series to fit seamlessly into any specified application.

Motor Options

©2011 PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

Stepper Motor

NEMA 11 (28mm)

NEMA 14 (35mm)

R

NEMA	Motor	Current per Phase	Holding	Torque	Detent	Detent Torque		ntertia	Length	Weights	Model
Rating	Power	А	mN • m	oz-in	mN • m	oz-in	g-cm ²	oz-in ²	mm (In)	Kġ (10)	P/N #
NEMA 11	Single	1	50	7.08	5	0.71	9	0.05	31 (1.21)	0.10 (0.22)	6200297
NEMA 11	Double	0.67	90	12.75	6	0.85	12	0.07	40 (1.56)	0.15 (0.33)	6200298
NEMA 11	Triple	1	100	14.16	8	1.13	18	0.1	51 (2.01)	0.20 (0.44)	6200299
							-	-		•	
NEMA 14	Single	0.4	60	8.5	10	1.42	12	0.07	26 (1.01)	0.15 (0.33)	6200300
NEMA 14	Triple	0.85	100	14.16	15	2.12	20	0.11	37 (1.44)	0.21 (0.46)	6200302
			-	-					-		
NEMA 17	Single	1.5	360	50.99	15	2.12	57	0.31	39.8 (1.57)	0.28 (0.62)	6200303
NEMA 17	Double	1.5	490	69.41	25	3.54	82	0.45	48.3 (1.90)	0.36 (0.79)	6200304
NEMA 17	Triple	1.5	630	89.24	30	4.25	123	0.68	62.8 (2.47)	0.60 (1.32)	6200305
							•	•			
NEMA 23	Single	1.5	500	70.82	22	3.12	135	0.74	41 (1.61)	0.42 (0.93)	6200306
NEMA 23	Double	1.5	1000	141.64	40	5.66	260	1.43	54 (2.13)	0.60 (1.32)	6200307
NEMA 23	Triple	1.4	1650	233.71	70	9.91	460	2.53	76 (2.99)	1.00 (2.20)	6200308

NEMA 17 (42mm)

Stepper Motor

FASTech applies state-of-the-art monitoring and drive advancements into their Ezi-SERVO[®] motor for precision, speed and power. Built with an internal unique algorithm, no hunting and sensorless stall detection, these stepper motors assure faultless control. The Ezi-SERVO[®] also employs digital signal processors to guarantee high precision and high speed drive. Available in closed or open loop designs (Ezi-STEP[®]).

Servo Motors - OM-R88M-G

Omron Servo Motors deliver smooth performance for accurate positioning combined with Servo Drivers OM-R7D-B and OM-R88D-G. They meet international standards for use in machinery worldwide. All models have a shaft key and top.

Brake connector

6

200

Servomotor connector

8 dia., height: 6

Two, 4.3 dia.

2

ght:

25

3

OMRON

OM-R88M-G Servo Motors

Dimensional Data

LL

Encoder

connector

230

SERVO MOTOR DATA							
Voltage	Rated Power	RPM	Encoder	Brake	LL	LN	Drive Compatibility
100V/200V	50W	3000	Incremental	Yes	102	26.5	OM-R7D-B, OM-R88D-G
100V/200V	50W	3000	Incremental	No	72	26.5	OM-R7D-B, OM-R88D-G
100V/200V	50W	3000	Absolute	Yes	102	26.5	OM-R88D-G
100V/200V	50W	3000	Absolute	No	72	26.5	OM-R88D-G
100V	100W	3000	Incremental	Yes	122	46.5	OM-R7D-B, OM-R88D-G
100V	100W	3000	Incremental	No	92	46.5	OM-R7D-B, OM-R88D-G
100V	100W	3000	Absolute	Yes	122	46.5	OM-R88D-G
100V	100W	3000	Absolute	No	92	46.5	OM-R88D-G
200V	100W	3000	Incremental	Yes	122	46.5	OM-R7D-B, OM-R88D-G
200V	100W	3000	Incremental	No	92	46.5	OM-R7D-B, OM-R88D-G
100V	100W	3000	Absolute	Yes	122	46.5	OM-R88D-G
100V	100W	3000	Absolute	No	92	46.5	OM-R88D-G

46 dia.

(Dimensions of shaft end with key and tap)

	KEY SPECIFICATIONS
Part #	OM-R88M-G
Structure	Totally enclosed, self-cooling; rated IP 65
Operating Position	All Directions
Insulation G	Туре В
Ambient operating temperature and humidity	0 to 40°C, 85% RH max.
Vibration Resistance	10 to 2,500 Hz and acceleration of 49 m/s 2 max. in the X, Y, and Z directions
Impact Resistance	Acceleration of 98 m/s ² max. 3 times each in the X, Y, and Z directions
International Standards	EMC Directive: EN 55011 class A group 1, EN 61000-6-2, IEC 61000-4-2/-3/-4/-5/-6/-11 Low voltage Directive: IEC 60034-1/-5 UL standards: UL 508C cUL standards: CSA 22.2 No.100

 40×40

Speed - Torque Performance - 3,000-r/min Cylindrical Servomotors

©2011 PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

Servo Drives - OM-R7D

Omron's OM-R7D-B provides high-speed pulse train output to OM-R88M-G servomotors for straightforward control applications. Simple real-time autotuning continuously sets optimum gain and eliminates the need for complicated adjustments. Vibration caused by resonance is suppressed to improve positioning accuracy even in systems with low mechanical rigidity.

In addition to conventional CW/CCW inputs (2 pulses) and SIGN/PULS inputs (1 pulse), the OM-R7D-B servo drive supports 90° phase difference input. This makes it possible to input encoder output signals directly into the Servo Drive for simplified synchronization control.

OM-R7D Servo Drive

SERVO DRIVE							
Part #	Voltage	Servomotor Capacity	Motor Compatibility				
OM-R7D-BPA5L	100V, single-phase	50W	OM-R88M-G05030H				
OM-R7D-BP01L	100V, single-phase	100W	OM-R88M-G10030L				
OM-R7D-BP01H	200V, single-phase /three-phase	100W	OM-R88M-G10030H				

POWER SUPPLY CABLES							
Part #	Voltage	Length					
OM-R7A-CLB002S2	Single-phase	2m					
OM-R7A-CLB002S3	Three-phase	2m					

MOTOR TO DRIVE CABLES						
Part #	Motor Brake	Length				
OM-R7A-CAB003S	Power cable	3m				
OM-R7A-CAB005S	Power cable	5m				
OM-R7A-CAB010S	Power cable	10m				
OM-R7A-CAB015S	Power cable	15m				
OM-R7A-CAB020S	Power cable	20m				
OM-R88A-CAGA003B	Power and Brake cable	3m				
OM-R88A-CAGA005B	Power and Brake cable	5m				
OM-R88A-CAGA010B	Power and Brake cable	10m				
OM-R88A-CAGA015B	Power and Brake cable	15m				
OM-R88A-CAGA020B	Power and Brake cable	20m				
OM-R88A-CRGB003C	Encoder cable	3m				
OM-R88A-CRGB005C	Encoder cable	5m				
OM-R88A-CRGB010C	Encoder cable	10m				
OM-R88A-CRGB015C	Encoder cable	15m				
OM-R88A-CRGB020C	Encoder cable	20m				

Dimensional Data

SERVO DRIVE SPECIFICATIONS							
Part #	OM-R7D-BPA5L	OM-R7D-BP01L	OM-R7D-BP01H				
Input power supply voltage	Single-phase 100 to 115 V	AC(85 to 127 V), 50/60 Hz	Both single-phase and three-phase 200 to 240 VAC (170 to 264 V), 50/60 Hz				
Maximum response frequency	Command pulses: Line drive: 500 kpps, Open collector: 200 kpps						
Operating ambient	0 to 55°C, 90% RH max.						
Vibration resistance	1() to 60 Hz; acceleration: 5.9 m/s2 (0.6 G) max.				
Impact resistance	Acceleration of 19.6 m/s2 max. 3 times each in X, Y, and Z directions.						
International standards	EMC Directive: EN 55011 class A group 1, EN 61000-6-2 Low Voltage Directive: EN 50178 UL/cUL standards: UL 508C, cUL C22.2 No.14						

Terminal Blocks & Cables - OM-R7D

Select the Servo Terminal Block (Relay Unit) and cable according to the part number of the Position Control Unit being used.

Position Control Unit

Servo Drive

Use With OM-R7D Servo Drives

TERMINAL BLOCK (RELAY UNITS) & CABLES						
Position Control Unit	Position Control Unit Cable	Servo Terminal Block (Relay Unit)	Servo Drive Cable*			
OM-CJ1W-NC133	0M-XW2Z-050J-A18 0M-XW2Z-100J-A18	OM-XW2B-20J6-1B				
OM-CJ1W-NC233	OM-XW2Z-050J-A19					
OM-CJ1W-NC433	OM-XW2Z-100J-A19	UIVI-XWZB-40J0-ZB				
OM-CS1W-NC133	0M-XW2Z-050J-A10 0M-XW2Z-100J-A10	OM-XW2B-20J6-1B				
OM-CS1W-NC233	OM-XW2Z-050J-A11					
OM-CS1W-NC433	OM-XW2Z-100J-A11	UIVI-AWZD-40J0-ZD				
OM-CJ1W-NC113	0M-XW2Z-050J-A14 0M-XW2Z-100J-A14	OM-XW2B-20J6-1B	OM-XW2Z-100J-B29			
OM-CJ1W-NC213	OM-XW2Z-050J-A15		OM-XW2Z-200J-B29			
OM-CJ1W-NC413	OM-XW2Z-100J-A15	UIVI-XWZB-40J0-ZB				
OM-CS1W-NC113	OM-XW2Z-050J-A6					
OM-C200HW-NC113	OM-XW2Z-100J-A6	UIVI-XW2D-20J0-ID				
OM-CS1W-NC213						
OM-CS1W-NC413	OM-XW2Z-050J-A7					
OM-C200HW-NC213	OM-XW2Z-100J-A7	UIVI-XWZB-40J0-ZB				
OM-C200HW-NC413						
OM-CJ1M-CPU21						
OM-CJ1M-CPU22	OM-XW2Z-050J-A33 OM-XW27-100J-A33	OM-XW2B-20J6-8A OM-XW2B-40.16-9A (for 2 axes)*	OM-XW2Z-100J-B32 OM-XW27-200.I-B32			
OM-CJ1M-CPU23						
OM-CQM1H-PLB21	0M-XW2Z-050J-A3 0M-XW2Z-100J-A3	OM-XW2B-20J6-3B	0M-XW2Z-100J-B29 0M-XW2Z-200J-B29			

*NOTE: Two (2) servo drive cables are required if 2-axis control is performed. Cable Length (050 = 0.5 m 100 = 1 m 200 = 2 m)

FOR CP1H/CP1L OR GENERAL PURPOSE CONTROLLERS					
Specifica	ations	Part #			
Connector Terminal Block Cables	1 m	OM-XW2Z-100J-B28			
	2 m	OM-XW2Z-200J-B28			
Constal Durness Control Cobles	1 m	OM-R7A-CPB001S			
General-Purpose Control Cables	2 m	OM-R7A-CPB002S			
Connector Terminal Block	M3 screw type	0M-XW2B-34G4			
	M3.5 screw type	0M-XW2B-34G5			

©2011 PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

Servo Drives - G-Series

Omron's OM-R88D-GT drives offer pulse/analog output for reliable position control. Integrate multiple axes easily with OM-R88D-GN drives with high-speed Mechatrolink-II motion network.

Eight internal speed settings allow you to change the speed easily by using external signals. Command Control Mode lets you switch operations between two of the following control modes for multi-phase processes: Position control, speed control (including internal speed) and torque control. Simple real-time auto-tuning continuously sets optimum gain and eliminates the need for complicated adjustments.

Vibration caused by resonance is suppressed to improve positioning accuracy.

G-Series Servo Drive

SERVO DRIVES								
Part #	Voltage	Servomotor Capacity	Output	Motor Compatibility				
OM-R88D-GTA5L	120V, single-phase	50W	Pulse/Analog	OM-R88M-G05030H, OM-R88M-G05030T				
OM-R88D-GT01L	120V, single-phase	100W	Pulse/Analog	OM-R88M-G10030L, OM-R88M-G10030S				
OM-R88D-GT01H	240V, single-phase	100W	Pulse/Analog	OM-R88M-G10030H, OM-R88M-G10030T				
OM-R88D-GNA5L-ML2	120V, single-phase	50W	Mechatrolink-II	OM-R88M-G05030H, OM-R88M-G05030T				
OM-R88D-GN01L-ML2	120V, single-phase	100W	Mechatrolink-II	OM-R88M-G10030L, OM-R88M-G10030S				
OM-R88D-GN01H-ML2	240V, single-phase	100W	Mechatrolink-II	OM-R88M-G10030H, OM-R88M-G10030T				

Dimensional Data

R88D-GT with Pulse/Analog Output

MOTOR TO DRIVE CABLES							
Part #	Motor Brake	Length					
OM-R88A-CAGA003S	Power cable	3m					
OM-R88A-CAGA005S	Power cable	5m					
OM-R88A-CAGA010S	Power cable	10m					
OM-R88A-CAGA015S	Power cable	15m					
OM-R88A-CAGA020S	Power cable	20m					
OM-R88A-CAGA003B	Power and Brake cable	3m					
OM-R88A-CAGA005B	Power and Brake cable	5m					
OM-R88A-CAGA010B	Power and Brake cable	10m					
OM-R88A-CAGA015B	Power and Brake cable	15m					
OM-R88A-CAGA020B	Power and Brake cable	20m					

ENCODER CABLES							
Part #	Cable Type	Length					
OM-R88A-CRGB003C	Incremental Encoder cable	3m					
OM-R88A-CRGB005C	Incremental Encoder cable	5m					
OM-R88A-CRGB010C	Incremental Encoder cable	10m					
OM-R88A-CRGB015C	Incremental Encoder cable	15m					
OM-R88A-CRGB020C	Incremental Encoder cable	20m					
OM-R88A-CRGA003C	Absolute Encoder cable	3m					
OM-R88A-CRGA005C	Absolute Encoder cable	5m					
OM-R88A-CRGA010C	Absolute Encoder cable	10m					
OM-R88A-CRGA015C	Absolute Encoder cable	15m					
OM-R88A-CRGA020C	Absolute Encoder cable	20m					

Terminal Blocks & Cables - G-Series

Select the Servo Terminal Block (Relay Unit) and cable according to the part number of the Position Control Unit being used.

CJ1W-NCF71 Position Control Unit

Use With OM-R88D-GT Servo Drives

TERMINAL BLOCK (RELAY UNITS) & CABLES						
Position Control Unit	Position Control Unit Cable	Servo Terminal Block (Relay Unit)	Servo Drive Cable			
OM-CQM1H-PLB21	0.5m = OM-XW2Z-050J-A3 1m = OM-XW2Z-100J-A3	OM-XW2B-20J6-3B				
OM-CS1W-NC113	0.5m = 0M-XW2Z-050J-A6					
OM-C200HW-NC113	1m = OM-XW2Z-100J-A6	OIM-XM5R-5010-1R				
OM-CS1W-NC213						
OM-CS1W-NC413	0.5m = 0M-XW2Z-050J-A7					
OM-C200HW-NC213	1m = 0M-XW2Z-100J-A7	UIVI-XWZB-40J0-ZB				
OM-C200HW-NC413						
OM-CS1W-NC133	0.5m = OM-XW2Z-050J-A10 1m = OM-XW2Z-100J-A10	OM-XW2B-20J6-1B	1m = 0M-XW27-100.I-B25			
OM-CS1W-NC233	0.5m = 0M-XW2Z-050J-A11		2m = 0M-XW2Z-200J-B25			
OM-CS1W-NC433	1m = 0M-XW2Z-100J-A11	UIVI-XVV2D-40J0-2D				
OM-CJ1W-NC113	0.5m = OM-XW2Z-050J-A14 1m = OM-XW2Z-100J-A14	OM-XW2B-20J6-1B				
OM0CJ1W-NC213	0.5m = 0M-XW2Z-050J-A15					
OM-CJ1W-NC413	1m = 0M-XW2Z-100J-A15	0M-XW5R-4010-5R				
OM-CJ1W-NC133	0.5m = OM-XW2Z-050J-A18 1m = OM-XW2Z-100J-A18	OM-XW2B-20J6-1B				
OM-CJ1W-NC233	0.5m = 0M-XW2Z-050J-A19					
OM-CJ1W-NC433	1m = 0M-XW2Z-100J-A19	UIVI-XW2B-40J0-2B				
OM-CJ1M-CPU21						
OM-CJ1M-CPU22	0.5m = OM-XW2Z-050J-A33 1m = OM-XW27-100.I-A33	OM-XW2B-20J6-8A (for 1 axes) OM-XW2B-20J6-8A (for 1 axes)	1m = OM-XW2Z-100J-B31 2m = OM-XW27-200.I-B31			
OM-CJ1M-CPU23						

Use With OM-R88D-GT/GN Servo Drives

CP1H1/CP1L OR GENERAL PURPOSE CONTROLLERS							
Specificat	ion	Part #					
Connector Terminal Block Cables	1 m	R88A-CPG001S	OM-XW2Z-100J-B33				
	2 m	R88A-CPG002S	OM-XW2Z-200J-B33				
Control Cables with Connector on One End	1 m	XW2Z-100J-B24	-				
	2 m	XW2Z-200J-B24	-				
	M3 screw type	XW2B-50G4	OM-XW2B-20G4				
Connector Terminal Block	M3.5 screw type	XW2B-50G5	OM-XW2B-20G5				
	M3 screw type	XW2D-50G6	OM-XW2D-20G6				

MOTION CONTROL UNIT CABLE

There are special cables for 1-axis and 2-axis Motion Control Unit operation. Select the appropriate cable for the number of axes to be connected.

Motion Control Unit	Cable Part #			
	For 1 axis	OM-R88A-CPG□□□ M1		
0101-03100-1010221-01/421-01	For 2 axes	OM-R88A-CPG□□□ M2		
The I digits in the model numbe Unit Cables come in four lengths: 1 m, EXAMPLE Part#: for 2-m 1-axis cable:	er indicate the (2 m. 3 m, and OM-R88A-CP	cable length. Motion Control I 5 m 'G002M1.		

©2011 PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

MLC Series (Motor Mount Only)

- Includes motor mount with coupling
- Includes motor spacer (if required)
- Precision machined body
- Small, compact design
- Smooth and quiet operation
- High acceleration, speed and rigidity

PBC Linear's stepper motors do not require a spacer due to the shorter shaft length. A spacer is required for any other manufacturer's motor. The spacer compensates for several dimensions which commonly vary amongst motor manufacturers (shaft diameter, shaft length, pilot diameter, pilot depth, bolt hole diameter, bolt type).

Motor Mount Assembly

ML Series Actuator Motor Mount & Spacer PBC Stepper Motor

MLD Series (Hand Driven shaft or knob)

- Perfect for hand-operated precision control
- Manual brake optional
- Textured knob for both positioning and braking
- Precision machined body
- Small, compact design
- Great repeatability

Dimensional Data

Build Your ML Actuator

6 Easy Steps

Follow these easy-to-follow steps to build your ML Series Actuator

STEP 1

Configure Your System Axis

- a. Determine if you need an external linear guide for support *(pg. 10 and 24)*
- b. Calculate the body length (pg. 11)

STEP 2

Choose The Drive Method

- a. Motor pre-mounted and tested by PBC? ➡ MLB (Page 14)
- b. Ready to mount your own motor? ➡ MLC (Page 18)
- c. Driven by hand? ➡ MLD *(Page 20)*

STEP 3

Choose How To Mount The Axis

a. Choose dovetail clamps or riser plates (Use riser plates with NEMA 17 and 23 motors) (*Page 27*)

STEP 4

Choose end of travel and home limit switches/sensors

- a. Determine mounting type/location (bracket type)
- b. Choose from list of compatible sensors

STEP 5

Choose The Cable Carrier

- a. List all cables to run through carrier
- b. Complete selection calculation
- c. Choose mounting type/location (bracket type)

Repeat 1-5 for each axis

STEP 6

Order Your System 1-800-962-8979 or 1-815-389-5600

Questions? Call an Application Engineer 1-888-777-0556

Ordering Options

- 9.8 - Ultra wear-resistant molybdenum disulfide impregnated nylon
- Prevents debris from entering or exiting actuator

_

-

_

- Seal strip is 725mm in length (Can be cut shorter using sharp pair of scissors.)

	2.4 -	-27.0 →	-	
	3.9 9.8-		16X N	//3.0x0.5
,	20.0 –	\odot	ŧ	
5	46.8 	\odot	\$	
	61.0 - 🖨 66.9 - 🖨		7 4 4	

70.

©2011 PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

Linear Guide Supports

The ML series features the unique option for dual external linear guides (also available with single linear guide option). These recirculating ball runner blocks assure high speed precision as well as enhanced load capacities and stability.

SUPPORT OPTIONS TO CREATE VARIABLE LEVELS OF PERFORMANCE

Technical Data Linear Guide Supports		(1) Single		(2) Dual			(1) Single		(2)	(2) Dual	
			# of runner blocks on each guide					# of runner blocks on each guide			
			1	2	1	2		1	2	1	2
Max. Load			44	44	44	44		10	10	10	10
Anti-Backlash - Lite Preload - Normal Preload	Fx		89	89	89	89		20	20	20	20
Standard Nut		Ν	267	267	267	267	lbf	60	60	60	60
I	Fy		180	250	445	890		40	56	100	200
	Fz		267	356	445	890		60	80	100	200
	Мх		1.8	3.6	8.6	18		16	32	76	160
Max. Moments	Му	Nm	1.8	5	3.6	10	lbf-in	16	44	32	88
	Mz		1.8	5	3.6	10		16	44	32	88
Bending Moment of Inertia	ly	om4	2.4	2.4	2.4	2.4	in4	0.058	0.058	0.058	0.058
(Second moment of area)	lz	CITI	4.4	4.4	4.4	4.4	111-7	0.106	0.106	0.106	0.106
Base Weight without Motor		Ka	0.127	0.136	0.195	0.205	lhf	0.28	0.30	0.43	0.45
Add for 100mm of Stroke		кÿ	0.18	0.18	0.21	0.21	ומו	0.40	0.40	0.46	0.46
Total Carriage Mass		Kg	.109	.117	.159	.175	lbm	.240	.257	.350	.385
Coefficent of Friction			0.	19	0.0	01		0.19		0.01	

NOTE:

1. Moment arms for calculating moments should be measured from the center of the extrusion.

2. Limit switches must be used in order to prevent the carriage from contacting the actuator end blocks, resulting in damage.

3. Servo drive system - Recommended overtravel of 20mm

4. Stepper motors or manual hand cranks system - add 5mm of over-travel.

Dimensional Data

Motor Couplings

MOTOR COUPLING (HUB & DISK)

- Compensates for motor and screw misalignment
- Electrically isolating
- Balanced design

DISK

FOR USE WITH NEMA 11, 14, 17 MOTORS										
HUBS P/N #	BORE*	BORE* OD HUB LENGTH (LH) COUPLING LENGTH (L) SHAFT PENETRATION SET SCREW						MOMENT OF INERTIA (kg x m^2)		
6200129	3mm	12.7mm	5.6mm	15.9mm	5.6mm	M3	0.0056"	1.64E-06		
6200286	5mm	12.7mm	5.6mm	15.9mm	5.6mm	M3	0.0050"	1.47E-06		
6200350	6mm	12.7mm	5.6mm	15.9mm	5.6mm	M3	0.0047"	1.37E-06		
6200113	.125"	0.500"	.222"	.625"	.222"	M3	0.0056"	1.64E-06		
6200349	.250"	0.500"	.222"	.625"	.222"	M3	0.0045"	1.32E-06		

FOR USE WITH NEMA 23 MOTORS ONLY.								
HUBS P/N #	BORE*	OD	HUB LENGTH (LH)	COUPLING Length (L)	SHAFT Penetration	SET SCREW	MOMENT OF INERTIA (Ib-in^2)	MOMENT OF INERTIA (kg x m^2)
6200130	4mm	19.1mm	7.6mm	22.2mm	7.6mm	M3	0.0069	2.02E-06
6200131	5mm	19.1mm	7.6mm	22.2mm	7.6mm	M3	0.0068	1.99E-06
6200132	6mm	19.1mm	7.6mm	22.2mm	7.6mm	M3	0.0066	1.94E-06
6200133	8mm	19.1mm	7.6mm	22.2mm	7.6mm	M3	0.0061	1.79E-06
6200114	.1875"	.750"	.300"	.875"	.300"	M3	0.0068	1.99E-06
6200115	.250"	.750"	.300"	.875"	.300"	M3	0.0065	1.91E-06
6200116	.3125"	.750"	.300"	.875"	.300"	M3	0.0062	1.82E-06

*Contact PBC linear if required bore is not listed.

DISK P/N #	MATERIAL	OD		TORS Stiff	IONAL NESS	RA ^T	TED RQUE	BR/ Tor	AKE Que	PARA Misalio	LLEL Snment	AX Mot	IAL FION	MOMENT OF Inertia
		(mm)	(in)	(Deg/ Nm)	(Deg /lb-in)	(Nm)	(lb-in)	(Nm)	(lb-in)	(mm)	(in)	(mm)	(in)	(kg x m^2)
6200148	Acetal	12.7	0.5	0.636	0.072	0.69	6	3.9	34	0.1	0.004	0.05	0.002	2.93E-08
6200149	Acetal	19.1	0.75	0.38	0.043	2.25	20	10.5	93	0.2	0.008	0.1	0.004	5.87E-08

NOTE: Motor coupling assembly (hubs & disk) are included in MLB & MLC Series actuators. One hub of the coupling is integral to the lead screw drive system. Alternate coupling styles are not available

Ordering Accessories

When ordering ML accessories the part number (P/N) can be located in a yellow box next to the item. The item part number can be given separately when placing your ML actuator order. If you have technical question contact a PBC Application Engineer at at **1-800-962-8979**.

Mounting Hardware (Clamps, Plates & Sensor Kits)

Proximity Sensors

Sensing	Sensing	Sensor	Output	Cable: 5m	Flying Lead	Cable: 275mm M8 Quick Disconnect		
Surface	Distance	Series	Configuration	Normally Open (NO)	Normally Closed (NC)	Normally Open (NO)	Normally Closed (NC)	
End	1.0		NPN	OM-E2S-Q13-□	OM-E2S-Q14-5M	OM-E2S-Q13-U2	OM-E2S-Q14-U2	
EIIU	End Lonnin	UIVI-E23-Q	PNP	OM-E2S-Q15-□	OM-E2S-Q16-5M	OM-E2S-Q15-U2	OM-E2S-Q16-U2	
Eront/Ton	0.5mm	OM-E2S-W	NPN	OM-E2S-W23-□	OM-E2S-W24-5M	OM-E2S-W23-U2	OM-E2S-W24-U2	
Γισιιζισμ	2.311111		PNP	OM-E2S-W25-□	OM-E2S-W26-5M	OM-E2S-W25-U2	OM-E2S-W26-U2	
Pottom	Dettern n/a		NPN		Contact manufa	acturer to order.		
DULLUIII	II/d	0111-2299	PNP	Contact manufacturer to order.				

NOTE: Omron and FASTtech drives require NPN sensors. Omron drives require NC sensors. If in doubt, order one of the sensors highlighted above in **yellow**. \Box = length of cable 5M" = 5 meters with flying lead; U2 = 275mm with quick disconnect

Operation Status	Output Configuration	P/N #	Timing Chart	Output Circuits
NO	NPN	0M-E2S-W23-□ 0M-E2S-Q13-□	Sensing object Present Not present Output transistor (load) OFF Operation indicator (orange) OFF	Proximity Bensor
NC	NPN	0M-E2S-W24-□ 0M-E2S-Q14-□	Sensing object Present Not present Output transistor (load) OFF Operation indicator (orange) OFF	Blue • Load current: 50 mA max.
NO	PNP	0M-E2S-W25-□ 0M-E2S-Q15-□	Sensing object Present Not present Output transistor (load) OFF Operation indicator (orange) OFF	Brown +V Biack Biack
NC	PNP	0M-E2S-W26-□ 0M-E2S-Q16-□	Sensing object Present Not present Output transistor OF (load) OFF Operation indicator ON (orange) OFF	mein circuit ↓ Load Blue ★ Load ourrent: 50 mA max.

Model P/N:		OM-E2S-W13 OM-E2S-W14	OM-E2S-W23 OM-E2S-W24	OM-E2S-Q15 OM-E2S-Q16	OM-E2S-W25 OM-E2S-W26	OM-E2SS
Sensing surface		Front	Тор	Front	Тор	N/A
Sensing distanc	е	1.6mm ± 15%	2.5mm ± 15%	1.6mm ± 15%	2.5 mm ± 15%	N/A
Set distance		0 to 1.2mm	0 to 1.9mm	0 to 1.2mm	0 to 1.9mm	N/A
Differential trave	el		10% max of se	ensing distance		N/A
Detectable object	ct type		Ferrou	s metal		N/A
Standard target	object	lron, 12 x 12 x 1 mm	lron, 15 x 15 x 1 mm	Iron, 12 x 12 x 1 mm	lron, 15 x 15 x 1 mm	N/A
Response frequ	ency (see note)		1 kHz	z min.		1 kHz max.
Power supply vo (operating volta	oltage ge range)	12	to 24V DC, ripple (p-p):	10% max., (10 to 30V E	DC)	10 to 30V DC ripple 10% max
Current Consum	ption		13 mA max. at 2	4 VDC (no-load)		15mA max
Operation Mode object approach	(with sensing ing)		OM-E2S OM-E2S	3 models: NO 4 models NC		N/A
Original Output	Load Current	NPN open collector (30 V D	NPN open collector output 50 mA max. (30 V DC max) PNP open collector output 50 mA max. (30 V DC max)		150mA max.	
Control Output	Residual voltage	1.0 V ma	ax. with a load current of	50 mA and a cable lengt	h of 1 m	2V max. (at 150mA load current 2m cable)
Indicator			Operation indi	(yellow)		
Protection Circu	its		Reverse polarity connec	Output short-circuit, Output reverse polarity, Power supply reverse polarity		
Ambient	Operating		-25°C to	sation		
temperature	Storage	-40°C i	to 85°C (-40°F to 185° I	⁻) with no icing or conde	nsation	-25 to 70°C (No Freezing)
Ambient	Operating		35% to 90% (with	no condensation)		35 to 95%RH
humidity	Storage		35% to 95% (with	no condensation)		35 to 95%RH
Temperature inf	luence	± 15% max. of	sensing distance at 23°	N/A		
Voltage Influence	е	± 2.5%	max. of sensing distant	N/A		
Insulation resist	ance		50 M n	case		
Dielectric streng	ıth	1,000 VA	C, 50/60 Hz for 1 min be	500 VAC, 50/60 Hz		
Vibration resistance			Destruction: 10 to 55 H	X, Y and Z directions		
Shock resistance		Destruction	n: 500 m/s² (1640 ft/s²) 3	Mechanical durability; 300m/s2		
Connection Met	hod		Pre-wired standard I	Normal: Pre-wire (standard 2m) -M`J:M12 Connector with Cable (Cable: 0.3m)		
Weight (packed	state)		Approx. 10	g (0.35 oz)		N/A
Material/Case			Polyaryl	ate resin		Case: PP, Code: PUR
				Magnetic	sensitivity	2.8mT max

Hysteresis

Repeatability

Pass speed

SENSOR IO CONNECTOR

- With a starty - Extension cables for M8 quick disconnect sensor.
- Simplifies maintenance and reduces downtime.
- Single-end I/O connector with female socket with attached cable.

6

Length	Regular Flex P/N:	High/Robotic Flex P/N:
2m	OM-XS3F-M421-402-A	OM-XS3F-M421-402-R
5m	OM-XS3F-M421-405-A	OM-XS3F-M421-405-R
10m	OM-XS3F-M421-410-A	OM-X\$3F-M421-410-R

©2011 PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

1mm max.

±0.1mm max.

10 m/s

Motor Mount Assembly - Replacement Parts

MOTOR MOUNT ASSEMBLY - NEMA 11/14/17

MOTOR MOUNT ASSEMBLY - NEMA 23

A Pacific Bearing Company 0 1187 INCLUDES: (1) Motor Mount Cover P/N: MLB028A-BMMC-23-KIT (4) BHCS M3 x 0.5 x 8mm 118 61.4 4X Ø 5.5 THRU ALL ↓ Ø 10 ▼ SCREWS PROVIDED 23.6 471 M5X0.8 X 8MM ļĮĮĮĮĮĮįįįį Õ BELT TENSIONER Æ Ð

4X M3X0.5 a'2 INCLUDES: (1) Motor Mount Bracket P/N: MLB028A-MTRMNT-UNI-ASY-23-KIT (3) SHCS M5 x 0.8 x 8mm 65.5 - 20.6 ۱°Ö 0 **I** Ø Ø6.3 ø5 °o O PULLEY PITCH DIAMETER = 18.2mm BELT MASS = 2.5g (1) Pulley Belt (3mm pitch) P/N: 6140032 (1) Timing Pulley, 9mm x 6.35mm P/N: 6140039 (1) Timing Pulley, 9mm x 5mm P/N: 6140035

Upgrade System Parts

LINEAR GUIDE KITS

CARRIAGE KIT INCLUDES: (rail sold separately.)

- 1. (4) SHCS M2 x 0.4 x 5mm
- 2. (1) Runner Block

LINEAR GUIDE RAIL KIT INCLUDES: (Carriage sold separately.)

- 1. (##)* SHCS M2 x 0.4 x 5mm
- 2. (1) Rail
- 3. (1) Mounting Bar

Linear Carriage Kit	P/N: MLA028A-NBC-KIT
Linear Guide Rail Kit	P/N: MLAO28A-NBR-XXXX-KIT

XXXX = Body Length of Actuator - 1mm

Cable Carrier Brackets

Cable carrier brackets vary depending on actuator orientations. Contact Application Engineering for assistance with selection of brackets.

KABELSCHLEPP Cable Carriers

- Smallest cable carriers for smooth and quiet operation in tight spaces
- End brackets with integral strain relief
- Light-weight and rugged fiber-reinforced nylon material
- Simple snap-together links make assembly and modifications to chain length effortless
- Links available with hinged-opening cavity lids for quick and simple installation of cables and hoses

Loop

Length

LB

89

(3.50)

114

(4.49)

142

(5.59)

Depot

UB

40

(1.57)

48

(1.89)

57

(2.24)

<u> </u>	LO - Z	+ 10	nyun		GUIVE
# of	Links	= L	κ÷t	(round	l up)

* Assumes the Fixed Point is located at the Center of the Total Machine Travel.

Self-Supporting Lengths

ORDERING GUIDE

Mountina

Height

н

52.5

(2.07)

68.5

(2.70)

86.5

(3.41)

Series

0130/0132

Option A*

Option B

Option C

(Std)

Bend

Radius

KR

20

(0.79)

28

(1.10)

37

(1.46)

*0130.40 is only available in bend radius KR20. Dimensions in mm (in).

EX: 4-KS0132-06KR20-1000+FI/MA

Technical Selection Guide

Before the selection process can begin, a few preliminary steps must be completed:

1. Define the payload and end effector (including wires, cables, hoses, etc)

2. Determine required Stroke for each axis

Stroke – X =	_mm or in	(if mm is chosen, convert to meters =	m)
Stroke – Y =	_mm or in	(if mm is chosen, convert to meters =	m)
Stroke – Z =	_mm or in	(if mm is chosen, convert to meters =	m)

3. Determine the basic system shape

With the MLA, any configuration is possible. Choose a basic style which will meet your needs. Some samples are shown here:

Now that the basic system information has been established, the configuration process begins. The following steps should be repeated for each axis. Start with the Z-Axis (aka the top axis or the axis which is farthest away from the fixed axis). Once the Z-Axis is finalized, move on to the Y-Axis (middle axis) and then the X-Axis.

1. Complete a Force Diagram for Your System's Static Loads

A force diagram should be completed for each axis. Assume the system is statically loaded. The system will encounter additional forces as a result of acceleration/deceleration and these will be accounted for in a later step. If the actuator must support a cantilevered load, do not forget to include moment as a result of acceleration/deceleration.

For each moment (Mx, My, Mz), write down the moment arm distance (meters or inches) in the spaces below. Be sure to measure from the <u>center of the screw</u>.

Dx = _____ m *or* in Dy = _____ m *or* in Dz = _____ m *or* in

2. Determine if External Linear Guides are Necessary

Compare your results with the Load chart shown on page 24 to determine if external linear guide supports are necessary. It's important to remember that it is not possible to maximize the loads and moments in all directions and that the applied forces and moments should conform to the formula shown below.

Equation 1. : $\frac{F_{y,applied}}{F_{y,max}} + \frac{F_{z,applied}}{F_{z,max}} + \frac{M_{x,applied}}{M_{x,max}} + \frac{M_{y,applied}}{M_{y,max}} + \frac{M_{z,applied}}{M_{z,max}} \le 1$

TIP: IF the axis being designed is in the middle or at the bottom of a multi-axis assembly, choose at least 1 external linear guide, even if the force diagram says that it is not necessary. Without the linear guides, the system may not have the necessary rigidity for your application.

3. Determine the Velocity/Acceleration Needed.

V _{MAX} =	m/s or in/s	A _{ACCEL} =	m/s ² or in/s ²
Equation 4.	$A_{ACCEL} = A_{DECEL} = \frac{\Delta v}{\Delta t}$	$\frac{V}{2} = \frac{(V_{MAX})}{\frac{(move time)}{n}} =$	$n * \frac{(V_{MAX})}{(move \ time)}$
Equation 3.	$V_{MAX} = \frac{n}{n-1} * \frac{\Delta x}{\Delta t} = \frac{n}{n-1}$	* ${(distance)\over (move time)}$	
Equation 2.	n = number of equal ti	me segments	

Start with n=2, which is the triangular motion profile. The triangular motion profile is generally the most efficient and has the highest velocity, but the lowest acceleration. If you want a trapezoidal with three equal time segments, use n=3. With this profile, the system will spend 1/3 of the time accelerating, 1/3 of the time at a constant velocity and 1/3 of the time decelerating. The trapezoidal profile will lower the maximum velocity by 25% and increase the acceleration by only 12.5%. For now, ignore any trajectory smoothing algorithms (i.e. S-curves, jerk reduction, etc) and consider only the "theoretical" values calculated here. If you need to account for the extra time necessary for the S-curves, reduce the move time by 10% and re-calculate.

Once the maximum velocity has been calculated, double check that V_{MAX} falls within the allowable travel speed shown in the chart on page 13 (*Maximum Travel Speeds*, lower left-hand corner)

4. Calculate the Applied Thrust Load (see diagram on previous page)

Equation 5.	F _{Thrust,total}	$= \sum F_{external} + \sum F_{weight and friction} + \sum F_{Accel}$
Equation 6.	F _{Thrust,total}	$= \sum F_{external} + \sum F_{mass (gravity)} + \sum F_{Thrust (friction)} + \sum F_{Accel}$
Equation 7.	$\sum F_{external}$	= Sum of all other external forces (except load)
Equation 8.	$\sum F_{mass(gravity)}$	$= \sum mass \times gravity \times \sin \beta$
Equation 9.	$\sum F_{Thrust}$ (friction	$f_{1} = \sum mass \times gravity \times \cos \beta \times \mu$
Per the	chart on page 10, μ = 0	0.19 for 0 or 1 external linear guide; μ = 0.01 for 2 external linear guides

Equation 10.	$\sum F_{Accel} = \sum mass \times acceleration$
Equation 11.	$Weight = W = mass \times gravity = m \times g$ (mass = kg or lbm)
Equation 12.	$Gravity = g \cong 9.81 \frac{m}{s^2} \cong 32.174 \frac{ft}{s^2}$
Equation 13.	β = angle of incline from horizontal (degrees)

After the thrust load has been calculated, compare this to the *Maximum Column Loading* chart on page13. Be sure that the calculated value is within the acceptable range.

- * Don't forget to include the weight of the carriage in the total mass of the system!
- * Unit for mass is "lbm" or "kg", not to be confused with "lbf" or "kgf"!

* BE SURE TO DOUBLE CHECK THE UNITS OF MEASURE!

5. Compare to PV Rating Chart & Critical Speed (whip) Chart (Page 12-13)

The next step is to calculate the actual rotations per minute (RPM) of the screw and to verify that the PV Value and thrust capacity of the nut have not been exceeded. To do this, use one of the formulas in Equation 15, below, to calculate the RPM of the screw. Once the RPM has been calculated, plot the location on the *PV Rating* chart (page 12). Once the point has been plotted, ensure that the selected lead's colored line is above and to the right of the plotted point. If it is not, the Thrust Load or the Maximum Velocity must be reduced or the lead must be increased so that the RPM can be reduced.

Equation 14.
$$RPM = \frac{rotations}{minute} = \left[V_{max}\left(\frac{m}{s}\right)\right] \times \left[\frac{60}{1}\left(\frac{s}{min}\right)\right] \times \left[\frac{1000}{1}\left(\frac{mm}{m}\right)\right] \times \left[\frac{1}{(LEAD)}\left(\frac{rot}{mm}\right)\right]$$

Equation 15.
$$RPM = \frac{rotations}{minute} = (metric) \frac{\left[V_{max}\left(\frac{m}{s}\right)\right] \times 60,000}{screw \ lead\left(\frac{mm}{rot}\right)} = (imperial) \frac{\left[V_{max}\left(\frac{in}{s}\right)\right] \times 60}{screw \ lead\left(\frac{in}{rot}\right)}$$

Optional leads: Units = mm (in): 38.1(1.50), 25.4 (1.00), 10.16(0.40), 3.18(0.125), 1(0.039) *Additional leads are available, contact factory for more information

6. Double Check All Values

Double check all charts and graphs on page 12-13 to ensure the selected system will perform as needed.

7. Determine the Required Motor

In order to determine the required motor, the maximum torque must be calculated.

Equation 16.	$Torque_{total} = \sum torque_{load} + \sum torque_{actuator\ components}$			
Equation 17.	$\sum torque_{load} (Nm) = \frac{\sum F_{Thrust (friction)} (N) \times lead (m)}{2 \times \pi \times Efficiency (\%)}$			
Equation 18.	$\sum torque_{actuator\ components} = No\ Load\ Torque\ (Nm) +\ Torque_{rot.inertia}$			
Equation 19.	No Load Torque (Nm) = Nut Torque + Seal Strip Torque + Linear Guide Torque			
	Seal strip torque:			
1	Nut torque:	without seal strip = 0 Nm (0 in-lbf)		
standard nut light preload n	= .007 Nm (0.06 in-lbf) uut = .057 Nm (.50 in-lbf)	with seal strip = .028 Nm (0.25 in-lbf)		
normal preload nut = .106 Nm (0.94 in-lbf)		Linear guide torque:		
		Single linear guide = .017 Nm (0.15 in-lbf)		
		Dual Linear guides = .034 Nm (0.30 in-lbf)		
Equation 20.	$Torque_{rot.inertia}(Nm) = screw rot$	t. intertia x angular acceleration		
Equation 21.	screw rot. intertia = 4.169×10^{-9}	$\frac{(kg x m^2)}{mm} x (body length (mm) + 32mm)$		
Equation 22.	angular acceleration = $\frac{1}{(screw lead})$	$\frac{4accel\left(\frac{m}{s^2}\right)}{l(mm)) x\left(\frac{1 m}{1000 mm}\right)}$		

Once you have calculated the required torque, a comparison must be made to the speed-torque curves for each specific motor. Don't forget to include a safety margin of at least 30%, i.e. the required toque must be at least 30% below the plotted torque curve.

A gear box may be required if the total inertia of the system is too far mismatched from the inertia of the motor. Each motor manufacturer will publish the maximum mismatch allowed for their motor. A general guideline is that stepper motors will allow up to a 10:1 mismatch. Servo's are capable of handling a much higher mismatch; however, the higher the mismatch, the more time will be spent tuning the servo during installation. Manufacturers will typically recommend staying under 6:1 mismatch and definitely under 10:1 mismatch¹. Please contact a PBC Application Engineer for assistance with selecting a gearbox.

For Torque charts, refer to the "Stepper Motor" section of the main LAT Catalog or <u>www.pbclinear.com</u> For servo motor driven applications, please contact our Applications Engineers at 1-800-962-8979.

©2011 PBC Linear™, A Pacific Bearing Company. See back page for legal disclaimer.

^{1.} LEGAL DISCLAIMER: The ratios presented on this page should be used as a GUIDELINE ONLY. Users should refer to the specifications published by each motor manufacturer as the numbers listed herein are likely to change and will vary from manufacturer to manufacturer.

8. Choose Dovetail Clamps (Mounting Type)

The mounting feet kits are listed on page 33. IF this axis will be mounted to another MLA axis underneath it, one (1) MLA028A-HDC-M3-KIT is necessary. If this is a single axis, or a bottom axis of a multiple axis gantry, then there are 3 choices. The basic kit is the MLA028A-HDC-M3-KIT and a minimum of (2) two kits are necessary. Use the *Distance Between Supports* chart on page 13 to determine the minimum number of supports based upon the body length and load of the specified system. (Extra supports can always be added to increase the rigidity of the system)

If a NEMA17 or NEMA23 motor are specified, the design may call for a Riser Plate to be used. The Riser Plate will raise the actuator off the mounting surface, which allows for the larger motor size to not interfere with the mounting surface. The 8 mm Riser Plate should be used with NEMA17 (or equivalent metric frame sizes) motors and the 15 mm Riser Plate should be used with NEMA23 (or equivalent metric frame sizes) motors. Multiple Riser Plate kits may be necessary.

9. Choose Sensors/Limit Switches

Now that the axis has been specified, choose the switches/sensors which will be mounted along the axis. PBC recommends that a minimum of two (2) sensors are used (one at each end of the axis) in order to prevent overtravel. Additional sensors may be necessary, depending upon the application. The most common reason for the additional sensors is to set a "home" and/or "target" positions.

10. Choose Cable Carrier

The last step in completing the system is to specify the cable carrier. This can only be done once all of the cables which will run through it have been defined. For most applications, this means a minimum of a power cable for the motor, 2 sensor cables and whatever cables/hoses are required for the payload. Servo and closed loop stepper motors will have a sensor cable and motors with a brake will also have a cable for the brake. Once a list of all of the cables has been compiled, visit the Cable Carrier section of the main LAT Catalog (or visit <u>www.pbclinear.com</u>) to complete the step by step selection guide for the cable carriers.

11. Place order

PBC Linear[™], A Pacific Bearing Co.

6402 E. Rockton Road Roscoe, IL 61073 USA Toll-Free: 1.800.962.8979 Fax: 1.815.389.5790

sales@pbclinear.com www.pbclinear.com

European Branch PBC Lineartechnik GmbH, A Pacific Bearing Co.

Niermannsweg 11-15 D-40699 Erkrath, Germany Office: +49.211.416073.10 Fax: +49.211.416073.11

sales_gmbh@pbclinear.de www.pbclinear.de

Application Data Sheet

RFQ:	FAX COMPLETI	E FORMS TO: 9-5790
Date:		
Company:	Fz	7
Contact:	Fy My My	x Fx
Address:	Z-AXIS	LOAD
Phone:		MOMENT ARU
E-mail:	X-AXIS Fy	$\frac{Fz_{A}}{Fz} + \frac{Mx_{A}}{Mx} + \frac{My_{A}}{My} + \frac{Mz_{A}}{Mz} <= 1$
APPLICATION DESCRIPTION – Sketch if available.		
Project Name:	Project Status: Concept	Design
Project Description:		
Project Timing:	Target Pricing:	
Quantity:	Components: Actuator Only Accessories	□ Actuator/Motor
Environment: Clean Room General Shop C	Heavy Industrial D Food/Washdown	□ High Vibration
SVSTEM TYDE		

SYSTEM TYPE

Axi Fy_A $+\frac{Fz_{A}}{Fz}+\frac{Mx_{A}}{Mx}+\frac{My_{A}}{My}+\frac{Mz_{A}}{Mz} <= 1$ s Orientation: C Vertical C Horizontal C Inverted Angled

Comments:

	AXIS		
	Х	Y	Z
Load N (lbf)			
Moment Nm (lbf-in)			
Stroke mm (in)			
Velocity mm/s (in/s)			
Acceleration m/s ² (ft/s ²)			
Deceleration m/s ² (ft/s ²)			

02011 PBC Linear**, A Pacific Bearing Company. See back page for legal disclaimer.

LINEAR ACTUATOR TECHNOLOGY

Worldwide Headquarters PBC Linear, A Pacific Bearing Co.

6402 E. Rockton Road Roscoe, IL 61073 USA Toll-Free: 1.800.962.8979

Fax: 1.815.389.5790

sales@pbclinear.com www.pbclinear.com

European Branch PBC Lineartechnik GmbH, A Pacific Bearing Co.

Niermannsweg 11-15 D-40699 Erkrath, Germany Office: +49.211.416073.10 Fax: +49.211.416073.11

sales_gmbh@pbclinear.de www.pbclinear.de

DISTRIBUTED BY

© 2011 PBC Linear™, A Pacific Bearing Company

"PBC Linear* and "PBC Lineartechnik GmbH" are subsidiaries of Pacific Bearing Company ("PBC"). The data and specifications in this publication have been carefully compiled and are believed to be accurate and correct. Specifications are subject to change without notice. It is the responsibility of the user to determine and ensure the suitability of PBC's products for a specific application. PBC's only obligation will be to repair or replace, without charge, any defective components if returned promptly. No liability is assumed beyond such replacement. Other corporate and product names, images, text and logos may be trademarks or copyrights of other companies and are used only for explanation and to the owners benefit; without intent to infringe. This document may not be reproduced, in part or whole, without the prior written authorization of PBC. Consult www.pbclinear.com for the latest technical updates. LITLAT-009 11.10