

eLINE Profiled Rail Systems

with Ball and Cam Roller Runner Blocks

R310EN 2211 (2008.04)

The Drive & Control Company

Linear Motion and Assembly Technologies

Ball Rail Systems Roller Rail Systems Linear Bushings and Shafts Ball Screw Drives Linear Motion Systems Basic Mechanical Elements Manual Production Systems Transfer Systems

www.boschrexroth.com/brl

eLINE Profiled Rail Systems

Product Overview	4
Technical Data, Design Notes, Mounting Instructions,	6
General Technical Data and Calculations	6
General Mounting Instructions	7
Selection of Accuracy Classes	, 8
Combination of Accuracy	9
Selection of System Preload	9
Load-Dependent Size Selection	10
Lubrication	11
eLINE Ball Runner Blocks	12
FNS R2031 flanged, normal, standard height	12
SNS R2032 slimline, normal, standard height	14
FNN R2033 flanged, normal, low profile	16
SNN R2034 slimline, normal, low profile	18
eLINE Cam Roller Runner Blocks, Corrosion-Resistant	20
Cam Roller Runner Blocks, standard R2041	20
Cam Roller Runner Blocks, short R2042	22
eLINE Guide Rails	24
For mounting from above R2035	24
For mounting from below R2037	25
eLINE Guide Rails, Corrosion-Resistant	26
For mounting from above R2035	26
For mounting from below R2037	27
Accessories	28
Lube unit with sealing function DSE	28
Funnel-type lube nipple	29
Hydraulic-type lube nipple	29
Seal unit DE	29
Cam roller with spigot	30
Notes for mounting	32
Manual clamping unit HK R2030	33

Product Overview

Product background	Profiled rail systems have firmly established themselves as standard linear motion solutions. They were developed for precision applications calling for highly accurate guidance and high rigidity, e.g. in machine tools. In the meantime, a great variety of other applications for rail systems have emerged where high rigidity and accuracy are frequently not the most important considerations. Rexroth's eLINE range of profiled rail systems was developed for applications of this kind, especially for light machinery and for handling and positioning movements where the main emphasis is on economy and durability. Made of wrought aluminum alloy with running tracks of hardened antifriction bearing steel, the runner blocks and guide rails are characterized by their low weight, com- pact design, and equal load bearing capacity in all four main directions of loading.
Application areas	Food and packaging industry, light machinery, handling technology, jigs and fixtures, assembly technology, positioning units, manual displacement systems, machine enclosures, door and window construction, building services technology, trade show and shop construction, woodworking machinery, DIY equipment, and many more.
Special features of the new eLINE Profiled Rail Systems:	 Available in the three most common sizes per DIN 645-1 Structural design allows for much greater parallelism and height offsets of the mounting bases. Can be mounted even on unmachined mounting surfaces, depending on the application. Especially compact, lightweight design; 60% weight saving versus steel versions. Significantly better corrosion resistance compared with the steel versions. Lubrication concept Runner blocks initially greased in-factory, therefore provided with long-term lubrication. Ball runner blocks available in two accuracy classes and two preload classes. Ball retainers in the runner blocks allow them to be removed from the rail without any loss of balls. All eLINE runner blocks are delivered with ready-mounted seal units. Guide rails also available in corrosion-resistant versions (Running tracks made from hardened corrosion-resistant antifriction bearing steel per EN 10088) All accuracy classes can be combined with one another. Interchangeability allows individual stocking of runner blocks and guide rails – top logistics unequalled anywhere in the world. Same connection dimensions as steel ball rail systems. Same guide rails for both ball and cam roller runner blocks.

- Ball Runner Blocks, flanged version
- Standard heightLow profile (size 25)

Ball Runner Blocks, slimline version - Standard height - Low profile (size 25)

Cam Roller Runner Blocks, standard

Lube unit with sealing function for eLINE ball and cam roller runner blocks (accessories)

Cam Roller Runner Blocks, short

Manual clamping unit

Technical Data, Design Notes, Mounting Instructions, Lubrication

General Technical Data and Calculations

Travel speed	$v_{max} = 2 \text{ m/s}$ (with eLINE ball runner blocks)		
	$v_{max} = 12 \text{ m/s}$ (with eLINE cam roller runner blocks)		
Acceleration			
	$a_{max} = 30 \text{ m/s}^2$ (with eLINE ball runner blocks)		
	$a_{max} = 50 \text{ m/s}^2$ (with eLINE cam roller runner blocks)		
		_	
Temperature resistance	$\vartheta = 0.60 \text{ °C}$		
Sealing	All eLINE runner blocks are delivered with ready-mounted seal units.		
Definition of dynamic load capacity C	The radial loading of constant magnitude and direction which a linear rolling bearing can theoretically endure for a nominal life of 100 km distance traveled (per ISO 14728 Part 1).		
Note on maximum load F _{max}	Because of the weight-optimized design of eLINE Profiled Rail Systems, the maximum permissible forces for static and dynamic loads must not be exceeded.		
Definition and calculation of the nominal life	The calculated service life which an individual linear rolling bearing, or a group of apparently identical rolling element bearings operating under the same conditions, can attain with a 90% probability, with contemporary, commonly used materials and manufacturing quality under conventional operating conditions (per ISO 14728 Part 1) and optimal installation conditions.		
Nominal life at constant speed	Calculate the nominal life L or L_h according to formula (1) or (2):		
	(1) $L = (\frac{C}{L})^3 \cdot 10^5$ L = nominal life (n	n) n)	
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	J)	
	F = equivalent load (f) s = length of stroke* (r	4) n)	
	(2) $L_h = \frac{L}{2 \cdot s \cdot n_S \cdot 60}$ $n_S = \text{stroke repetition rate}$	1,	
	L (full cycles) (min ⁻	')	

* For a stroke length < 2 x runner block length, the load capacities will be reduced. Please consult us.

General Mounting Instructions

Parallelism of the installed rails measured at the guide rails and at the runner blocks

The parallelism offset P1 causes a slight increase in preload on one side of the assembly.

As long as the values specified in the table are met, the effect of parallelism offsets on the service life can generally be neglected.

▲ eLINE profiled rail systems allow substantially higher installation tolerances compared to steel rail systems.

Vertical offset

Provided the vertical offset is kept within the stated tolerances for S_1 and S_2 , its influence on the service life can generally be neglected.

The tolerance for dimension H, as given in the table with accuracy classes in the "Technical Data" section, must be deducted from the permissible vertical offset S_1 of the guide rails.

Permissible vertical offset in the transverse direction S₁

Size	Parallelism offset P ₁ (mm) for preload class Ball runner blocks			Cam roller runner blocks
		C0	C1	C1
15	(0.015)	0.027	0.018	0.034
20	(0.018)	0.031	0.021	0.040
25	(0.019)	0.034	0.022	0.042

(Values in parentheses are those for standard Ball Rail Systems)

Calculation factor	ioi preioau ciass	5		
	Ball runner bloc	ks	Cam roller runner blocks	
	CO	C1		C1
Y	1.2 · 10 ⁻³	7.5 · 10 ^{−4}	1.5 · 1	10 ⁻³

Permissible vertical offset in the longitudinal direction S₂

The tolerance "max. difference in dimension H on the same rail", as given the table with accuracy classes in the "Technical Data" section, must be deducted from the permissible vertical offset S₂ of the runner blocks.

distance between runner blocks (mm)

= calculation factor

Calculation factor	for preload class	6		
	Ball runner bloc	ks	Cam roller runner blocks	
	C0	C1	C1	I
(6 · 10 ⁻⁴	2.1 · 10 ^{−4}	6.5 · 10 ⁻⁴	4

χ

Preload classes C0 = without preload C1 = with preload

Technical Data, Design Notes, Mounting Instructions, Lubrication

General Technical Data and Calculations

Selection of Accuracy Classes

Accuracy classes and their tolerances

eLINE Ball Rail Systems are available in two different accuracy classes, eLINE Cam Roller Guide Systems in accuracy class E only.

Built-in interchangeability through precision machining

Rexroth manufactures its guide rails and runner blocks with such high precision, especially in the running track zone, that each individual component element can be replaced by another at any time. For example, different runner blocks can be used without problems on one and the same guide rail of the same size.

Parallelism offset P_1 of the rail system in service

Measured at middle of runner block

Key to illustration

 $P_1 = parallelism offset$ L = rail length

Combination of Accuracy Classes

Runner block		Rails	
		N	E
		(μm)	(μm)
Ν	Tolerance dimension H	+/- 100	+/- 110
	Tolerance dimension A ₃	+/- 40	+/- 60
	Max. diff. in dimens. H and A_3 on one rail	30	30
E	Tolerance dimension H	+/- 115	+/- 120
	Tolerance dimension A ₃	+/- 50	+/- 70
	Max. diff. in dimens. H and A_3 on one rail	60	60

Recommendations for combining accuracy classes

Recommended for short strokes and close spacing of runner blocks: Runner blocks in higher accuracy class than guide rail. Recommended for long strokes and larger runner block spacing: Guide rail in higher accuracy class than runner blocks.

Selection of System Preioa

Selection of the preload class In versions without preload there will be a slight clearance between the runner block and the rail. With two rails and use of more than one runner block per rail, this clearance is usually equalized by parallelism tolerances.

Code	Version	Application area
C0	without preload	For particularly smooth running guide systems with
		the lowest possible friction and a minimum of external
		influences, and for mounting bases with low accuracy.
C1	with preload	For more accurate guide systems with low external loads.

Technical Data, Design Notes, Mounting Instructions, Lubrication

Load-Dependent Size Selection

⚠ Do not exceed the maximum loading of the screw connections!

Determination of the runner block size

Calculation of load on bearing for a

runner block

1 Determine F_{comb}

- 2 Pre-select the runner block
- **3** Calculate the ratio of the dynamic load capacity C of the selected runner block relative to F_{comb}. (F_{comb} divided by C)

If $F_{comb}/C > 0.4$: runner block is sized too small.

Select the next largest size of runner block and repeat the calculation (step 3). The ratio must always be $F_{comb}/C \le 0.4$, otherwise F_{max} of the selected runner block will be exceeded.

Note

The load ratio F_{comb}/C is the quotient of the equivalent dynamic load on the bearing divided by the dynamic load capacity C (see "General Technical Data and Calculations").

$F_{comb} = k_{f} \cdot \left(\left F_{Z} \right + \left F_{Y} \right + C \cdot \frac{\left M_{X} \right }{M_{t}} + C \cdot \frac{\left M_{Y} \right }{M_{L}} + C \cdot \frac{\left M_{Z} \right }{M_{L}} \right)$				
F_{comb}	=	combined equivalent load	(N)	
$F_{Y} F_{Z}$	=	Dynamic loads	(N)	
M _X	=	Moment about the X-axis ¹⁾	(Nm)	
M _Y	=	Moment about the Y-axis ²⁾	(Nm)	
Mz	=	Moment about the Z-axis ²⁾	(Nm)	
Mt	=	dynamic torsional moment load capacity	(Nm)	
		For values, see runner blocks		
ML	=	dynamic longitudinal moment load capacity	(Nm)	
		For values, see runner blocks		
k _f	=	Operating factor	For values, see table	
 The moment M_X will only be fully effective in an application with only one guide rail. For all other cases, see "Information on moment load calculation." 				

2) The moment M_Y or M_Z will only be effective when only one runner block is mounted on a guide rail. For all other cases, see "Information on moment load calculation."

Operating factors		Application		
Ball	Cam roller			
runner	runner			
blocks	blocks			
0.8	0.8	Linear motion guide with manual drive		
1.0	1.0	Door guides, seat adjustment, slide units for lamps, guidance of		
		protective wire meshes, general laboratory applications, slide units		
		for measuring devices		
1.2	1.1	Application in a linear motion axis with ball screw drive		
1.3	1.2	Application in a linear motion axis with rack and pinion drive		
1.5	1.2	Application in a linear motion axis with toothed belt drive		
2.0	1.5	Auxiliary axis of machine tool not subject to dirt		
4.0	4.0	Application in a linear motion axis with pneumatic drive		
7.0	5.0	Application in a linear motion axis with linear motor drive		
9.0	9.0	Application in very dirty environments		
Not for use in		Main axis of a machine tool; aggressive wood dust environment;		
applications like		oscillating conveyors.		
		Ball runner blocks: $\Im > 60 \ ^\circ C$, a $> 30 \ m/s^2$, v $> 2 \ m/s$		
		Cam roller runner blocks: ϑ > 60 °C, a > 50 m/s ² , v > 12 m/s		
		Danger to life and limb (e.g. unsecured overhead installation)		

Recommended operating factors \mathbf{k}_{f}

Lubrication

F = equivalent dynamic load

(N)

(N)

from Rexroth means that the eLINE Profiled Rail Systems (eLINE ball and cam roller runner blocks) are lubed for life. Applies only to a ratio $F_{comb}/C \le 0.15$ (values from table 1) (Zone A in the graph)

For $F_{comb} > 0.15C$ and $\leq 0.4C$ (values from table 1), zone B in the graph applies; relubrication is necessary.

Example:

For F_{comb} = 0.25, zone B in the graph applies. Relubrication required after a distance traveled s = 6,400 km. (To calculate F_{comb} , see "Calculation of load on bearing for a runner block")

Size	Ball	Cam roller
	runner blocks	runner blocks
	F _{0.15C} (N)	R2041 F _{0.15C} (N)
15	750	140
20	1700	390
25	2500	400

- The following conditions apply:
- Initial greasing with Dynalub 510 _
- With Seal Unit (DE)
- Maximum speed:
- $v_{max} = 2 \text{ m/s}$
- No exposure to metalworking fluids _
- Ambient temperature: _ $T = 20 - 30 \,^{\circ}C$

▲ Take account of the general service life of lubricants!

▲ If other lubricants are used, this may lead to a reduction in the relubrication intervals, the achievable travel in short-stroke applications, and the load capacities. Possible chemical interactions between the plastic materials, lubricants and preservative oils must also be taken into account.

▲ Do not use greases containing solid particles (e.g., graphite or MoS₂)!

 \triangle If your application involves more demanding environmental requirements (such as clean room, vacuum, food industry environment, increased exposure to fluids or aggressive media, extreme temperatures), please consult us. These situations must be investigated on a case by case basis and may require the use of a special lubricant. Be sure to have all the information concerning your application at hand when contacting us.

eLINE Ball Runner Blocks

Ball runner block FNS R2031 Flanged, normal, standard height

- Runner block body made from wrought aluminum alloy
- Hardened steel running tracks
- Steel balls per DIN 5401
- With Seal Unit (DE)
- Initial greasing with Dynalub 510

Size	Size Accuracy class Part numbers								
		CO	C1						
15	Ν	R2031 194 10	R2031 114 10						
	E	R2031 195 10	-						
20	Ν	R2031 894 10	R2031 814 10						
	E	R2031 895 10	-						
25	Ν	R2031 294 10	R2031 214 10						
	E	R2031 295 10	-						

Size	e Dimensions (mm)													Weight ¹⁾					
	A	A ₁	A ₂	A ₃	В	B ₁	B ₂	н	H_1	H ₂	V 1	E ₁	E ₂	N_1	$N_6^{\pm 0.5}$	S ₁	S ₂	S ₅	(kg)
15	47	23.5	15	16.0	64.0	37.8	59.0	24	19.8	14.0	4.1	38	30	6.0	8.1	4.3	M5	4.4	0.08
20	63	31.5	20	21.5	85.9	51.5	80.3	30	24.7	19.0	5.5	53	40	8.0	11.6	5.3	M6	6.0	0.18
25	70	35.0	23	23.5	96.0	58.0	90.0	36	29.9	21.8	6.4	57	45	9.3	12.9	6.7	M8	7.0	0.26

Load capacities ²⁾ (N)		Moments (Nm)	Moments (Nm)								
	→ <u></u> ←		5	7								
Size	C	F _{max}	Mt	M _{tmax}	ML	M _{Lmax}						
15	5000	2000	36	14	29	12						
20	11000	4400	101	40	89 3							
25	16000	6400	165	66	147	59						

1) Please note the low weight of the runner block.

 Determination of the dynamic load capacities and moments is based on a travel life of 100,000 m. Often only 50,000 m are actually stipulated. For comparison: Multiply values C, M_t and M_L from the table by 1.26.

eLINE Ball Runner Blocks

Ball runner block SNS R2032 Slimline, normal, standard height

- Runner block body made from wrought aluminum alloy
- Hardened steel running tracks
- Steel balls per DIN 5401
- With Seal Unit (DE)
- Initial greasing with Dynalub 510

Size	Accuracy class	Part numbers									
		CO	C1								
15	N	R2032 194 10	R2032 114 10								
	E	R2032 195 10	-								
20	N	R2032 894 10	R2032 814 10								
	E	R2032 895 10	-								
25	N	R2032 294 10	R2032 214 10								
	E	R2032 295 10	-								

Size	Size Dimensions (mm)														Weight ¹⁾			
	A	A 1	A ₂	A ₃	В	B ₁	B ₂	H	H ₁	H ₂	V 1	E1	E ₂	N ₁	N ₆ ^{±0.5}	S ₂	S ₅	(kg)
15	34	17	15	9.5	64.0	37.8	59.0	24	19.8	14.0	4.1	26	26	6.0	8.1	M4	4.4	0.07
20	44	22	20	12.0	85.9	51.5	80.3	30	24.7	19.0	5.5	32	36	7.5	11.6	M5	6.0	0.15
25	48	24	23	12.5	96.0	58.0	90.0	36	29.9	21.8	6.4	35	35	9.0	12.9	M6	7.0	0.22

Load capacities ²⁾ (N)		Moments (Nm)	Moments (Nm)								
	→ <u></u> ←		Ţ	7								
Size	C	F _{max}	Mt	M _{tmax}	ML	M _{Lmax}						
15	5000	2000	36	14	29	12						
20	11000	4400	101	40	89 35							
25	16000	6400	165	66	147	59						

1) Please note the low weight of the runner block.

 Determination of the dynamic load capacities and moments is based on a travel life of 100,000 m. Often only 50,000 m are actually stipulated. For comparison: Multiply values C, M_t and M_L from the table by 1.26.

eLINE Ball Runner Blocks

Ball runner block FNN R2033

- Flanged, normal, low profile
 Runner block body made from wrought aluminum alloy
- Hardened steel running tracks
- Steel balls per DIN 5401
- With Seal Unit (DE)
- Initial greasing with Dynalub 510

Size	Accuracy class	Part numbers							
		CO	C1						
25	N	R2033 294 10	R2033 214 10						
	E	R2033 295 10	-						

A S_{2} S_{1} B B_{2} B B_{2} F C
Lube nipple can only be mounted on lube unit (DSE).
Size Dimensions (mm) Weight ¹⁾ A A1 A2 B B1 B2 H H1 H2 V1 E1 E2 N1 Ne ^{±0.5} S1 S2 S5 (kg)

Load capacities ²⁾ (N)		Moments (Nm)								
			5	7							
Size	С	F _{max}	Mt	M _{tmax}	ML	M _{Lmax}					
25	16000	6400	165	66	147	59					

6.4

60

35

9.3

12.9

6.7

M8

7.0

0.24

33 26.9 21.8

1) Please note the low weight of the runner block.

23

25 96.0 58.0 90.0

25

73 36.5

 Determination of the dynamic load capacities and moments is based on a travel life of 100,000 m. Often only 50,000 m are actually stipulated. For comparison: Multiply values C, M_t and M_L from the table by 1.26.

eLINE Ball Runner Blocks

Ball runner block SNN R2034

- Slimline, normal, low profile
 Runner block body made from wrought aluminum alloy
- Hardened steel running tracks
- Steel balls per DIN 5401
- With Seal Unit (DE)
- Initial greasing with Dynalub 510

Size	Accuracy class	Part numbers	
		CO	C1
25	N	R2034 294 10	R2034 214 10
	E	R2034 295 10	-

 M_{Lmax}

59

1) Please note the low weight of the runner block.

 Determination of the dynamic load capacities and moments is based on a travel life of 100,000 m. Often only 50,000 m are actually stipulated. For comparison: Multiply values C, M_t and M_L from the table by 1.26.

eLINE Cam Roller Runner Blocks, Corrosion-Resistant

Cam Roller Runner Blocks, standard R2041

- Travel speed up to 12 m/s
- Runner block body made from wrought aluminum alloy
- 4 corrosion-resistant cam rollers per EN 10088
- With Seal Unit (DE)
- Same dimensions and mounting hole pattern as ball runner block R 2031
- Lube unit with sealing function DSE as an option
- Can be used on all eLINE guide rails of corresponding size
- Reference edge for precise alignment

Size	Accuracy class	Part numbers
		C1
15	E	R2041 115 10
20	E	R2041 815 10
25	E	R2041 215 10

Size	Dimensions (mm)													Weight ¹⁾		
	A	A ₁	A ₂	A ₃	в	B ₁	B ₂	н	H ₁	V 1	E1	E ₂	N ₁	S 1	S ₂	(kg)
15	47	23.5	15	16.0	64.0	51.0	59.0	24	19.8	3.3	38	30	8.0	4.3	M5	0.11
20	63	31.5	20	21.5	85.9	70.3	80.3	30	24.7	4.7	53	40	8.0	5.3	M6	0.24
25	70	35.0	23	23.5	96.0	78.0	90.0	36	29.9	5.6	57	45	12.0	6.7	M8	0.33

Size	Load capaciti	es ²⁾ (N) F ₂	<u>z</u>		Moments (Nm)			\sim	
		→ Ţ	Ⅰ ← F _Y		Ę				
	C C	F _{ymax} / F _{y0max}	F _{zmax}	F _{z0max}	M _t	M _{tmax}	M _L	M _{Lmax}	
15	940	320	120	200	7	1.1	11.5	1.8	
20	2620	800	440	735	24	3.6	42	6.2	
25	2700	800	440	735	28	3.9	50	7.2	

1) Please note the low weight of the runner block.

 Determination of the dynamic load capacities and moments is based on a travel life of 100,000 m. Often only 50,000 m are actually stipulated. For comparison: Multiply values C, M_t and M_L from the table by 1.26.

eLINE Cam Roller Runner Blocks, Corrosion-Resistant

Cam Roller Runner Blocks, short R2042

Requires at least 2 cam roller runner blocks per guide rail.

- Travel speed up to 12 m/s
- Runner block body made from wrought aluminum alloy
- 2 corrosion-resistant cam rollers per EN 10088
- With Seal Unit (DE)
- Lube unit with sealing function DSE as an option
- Can be used on all eLINE guide rails of corresponding size
- Reference edge for precise alignment
- Especially suited for guidance using two rails

Size	Accuracy class	Part numbers
		C1
15	E	R2042 115 10
20	E	R2042 815 10
25	E	R2042 215 10

Size	ze Dimensions (mm)														Weight ¹⁾
	A	A ₁	A ₂	A3	В	B ₁	B ₂	н	H ₁	V1	E1	N ₁	S ₁	S ₂	(kg)
15	47	23.5	15	16.0	49.7	36.7	44.7	24	19.8	3.3	38	8.0	4.3	M5	0.08
20	63	31.5	20	21.5	62.9	47.3	57.3	30	24.7	4.7	53	8.0	5.3	M6	0.16
25	70	35.0	23	23.5	73.0	55.0	67.0	36	29.9	5.6	57	12.0	6.7	M8	0.23

Size	Load capac	ities ²⁾ (N) Fz → ←	F _Y	Moments (Nm)				
	С	F _{y0max}	F _{z0max}	Mt	M _{tmax}			
15	470	160	100	3.5	0.5			
20	1310	400	365	12	1.8			
25	1350	400	365	14	2			

1) Please note the low weight of the runner block.

2) Determination of the dynamic load capacities and moments is based on a travel life of 100,000 m. Often only 50,000 m are actually stipulated. For comparison: Multiply values C, M_t and M_L from the table by 1.26.

eLINE Guide Rails

Guide rails for mounting from above R2035 With plastic mounting hole plugs (provided)

- For ball and cam roller runner blocks
- Rail body made from wrought aluminum alloy, anodized
- Running tracks made from hardened antifriction bearing steel

Part numbers and rail lengths

Size	Accuracy	Part numbers		Recomm	ended rail	length, one	e-piece			
	class	One-piece	Composite	Spacing	Number o	of holes n _B	Rail lengt	h L (mm)		
		Rail length	Number of sections,	т						
		L (mm)	Rail length L (mm)	(mm)						
15	Ν	R2035 104 31,	R2035 104 3.,		2/80	2/90	2/100	2/116	3/176	4/236
	E	R2035 105 31,			5/296	6/356	7/416	8/476	9/536	10/596
20	N	R2035 804 31,	R2035 804 3.,	1	11/656	12/716	13/776	14/836	15/896	16/956
	E	R2035 805 31,		1	17/1016	18/1076	19/1136	20/1196	21/1256	22/1316
25	N	R2035 204 31,	R2035 204 3.,	1	23/1376	24/1436	25/1496	26/1556	27/1616	28/1676
	E	R2035 205 31,			29/1736	30/1796	31/1856	32/1916	33/1976	34/2036
				60	35/2096	36/2156	37/2216	38/2276	39/2336	40/2396
					41/2456	42/2516	43/2576	44/2636	45/2696	46/2756
					47/2816	48/2876	49/2936	50/2996	51/3056	52/3116
					53/3176	54/3236	55/3296	56/3356	57/3416	58/3476
					59/3536	60/3596	61/3656	62/3716	63/3776	64/3836
					65/3896	66/3956	67/4016			

Dimensions and weights

Size	Dimensions (mm)													
	A2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
15	15	14.0	8.1	7.4	4.4	28.0	10	60	4016	0.57				
20	20	19.0	11.6	9.4	6.0	28.0	10	60	4016	0.98				
25	23	21.8	12.9	11.0	7.0	28.0	10	60	4016	1.25				

1) One-piece guide rails

Guide Rails for mounting from below R2037

- For ball and cam roller runner blocks
- Rail body made from wrought aluminum alloy, anodized
- Running tracks made from hardened antifriction bearing steel
- Especially suitable for mounting on e.g. metal plates, plastics, or wood with through-holes

Part numbers and rail lengths

Size	Accuracy	Part numbers		Recomm	ended rail	length, on	e-piece			
	class	One-piece	Composite	Spacing	Number o	of holes n _B	/Rail lengt	: h L (mm)		
		Rail length	Number of sections,	Т						
		L (mm)	Rail length L (mm)	(mm)						
15	N	R2037 104 31,	R2037 104 3.,		2/80	2/90	2/100	2/116	3/176	4/236
	E	R2037 105 31,			5/296	6/356	7/416	8/476	9/536	10/596
20	N	R2037 804 31,	R2037 804 3.,	1	11/656	12/716	13/776	14/836	15/896	16/956
	E	R2037 805 31,		1	17/1016	18/1076	19/1136	20/1196	21/1256	22/1316
25	N	R2037 204 31,	R2037 204 3.,		23/1376	24/1436	25/1496	26/1556	27/1616	28/1676
	E	R2037 205 31,		60	29/1736	30/1796	31/1856	32/1916	33/1976	34/2036
				60	35/2096	36/2156	37/2216	38/2276	39/2336	40/2396
					41/2456	42/2516	43/2576	44/2636	45/2696	46/2756
					47/2816	48/2876	49/2936	50/2996	51/3056	52/3116
					53/3176	54/3236	55/3296	56/3356	57/3416	58/3476
					59/3536	60/3596	61/3656	62/3716	63/3776	64/3836
					65/3896	66/3956	67/4016			

Dimensions and weights

Size	Dimens	Dimensions (mm)											
	A2	H ₂	N ₇	S7	T _{1S} ^{±0.5}	T _{1min}	Т	L _{max} ¹⁾	(kg/m)				
15	15	14.0	7.5	M5	28.0	10	60	4016	0.57				
20	20	19.0	9.0	M6	28.0	10	60	4016	0.98				
25	23	21.8	12.0	M6	28.0	10	60	4016	1.25				

1) One-piece guide rails

eLINE Guide Rails, Corrosion-Resistant

Guide Rails corrosion-resistant, for mounting from above R2035

With plastic mounting hole plugs (provided)

- For ball and cam roller runner blocks
- Rail body made from wrought aluminum alloy, anodized
- Running tracks made from hardened corrosion-resistant antifriction bearing steel per EN 10088

Part numbers and rail lengths

Size	Accuracy	Part numbers		Recomm	ended rail	length, one	e-piece			
	class	One-piece	Composite	Spacing	Number o	of holes n _B	Rail lengt	h L (mm)		
		Rail length	Number of sections,	т						
		L (mm)	Rail length L (mm)	(mm)						
15	Ν	R2035 124 31,	R2035 124 3.,		2/80	2/90	2/100	2/116	3/176	4/236
	E	R2035 125 31,		-	5/296	6/356	7/416	8/476	9/536	10/596
20	N	R2035 824 31,	R2035 824 3.,		11/656	12/716	13/776	14/836	15/896	16/956
	E	R2035 825 31,			17/1016	18/1076	19/1136	20/1196	21/1256	22/1316
25	N	R2035 224 31,	R2035 224 3.,		23/1376	24/1436	25/1496	26/1556	27/1616	28/1676
	E	R2035 225 31,			29/1736	30/1796	31/1856	32/1916	33/1976	34/2036
				60	35/2096	36/2156	37/2216	38/2276	39/2336	40/2396
					41/2456	42/2516	43/2576	44/2636	45/2696	46/2756
					47/2816	48/2876	49/2936	50/2996	51/3056	52/3116
					53/3176	54/3236	55/3296	56/3356	57/3416	58/3476
					59/3536	60/3596	61/3656	62/3716	63/3776	64/3836
					65/3896	66/3956	67/4016			

Dimensions and weights

Size	Dimensions (mm)												
	A2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
15	15	14.0	8.1	7.4	4.4	28.0	10	60	4016	0.57			
20	20	19.0	11.6	9.4	6.0	28.0	10	60	4016	0.98			
25	23	21.8	12.9	11.0	7.0	28.0	10	60	4016	1.25			

1) One-piece guide rails

Guide Rails corrosion-resistant, for mounting from below R2037

- For ball and cam roller runner blocks
- Rail body made from wrought aluminum alloy, anodized
- Running tracks made from hardened corrosion-resistant antifriction bearing steel per EN 10088
- Especially suitable for mounting on e.g. metal plates, plastics, or wood with through-holes

Part numbers and rail lengths

Size	Accuracy	Part numbers		Recommended rail length, one-piece							
	class	One-piece	Composite	Spacing	Number o	of holes n _B	/Rail lengt	h L (mm)			
		Rail length	Number of sections,	Т							
		L (mm)	Rail length L (mm)	(mm)							
15	N	R2037 124 31,	R2037 124 3.,		2/80	2/90	2/100	2/116	3/176	4/236	
	E	R2037 125 31,			5/296	6/356	7/416	8/476	9/536	10/596	
20	N	R2037 824 31,	R2037 824 3.,	1	11/656	12/716	13/776	14/836	15/896	16/956	
	E	R2037 825 31,		1	17/1016	18/1076	19/1136	20/1196	21/1256	22/1316	
25	N	R2037 224 31,	R2037 224 3.,		23/1376	24/1436	25/1496	26/1556	27/1616	28/1676	
	E	R2037 225 31,			29/1736	30/1796	31/1856	32/1916	33/1976	34/2036	
				60	35/2096	36/2156	37/2216	38/2276	39/2336	40/2396	
					41/2456	42/2516	43/2576	44/2636	45/2696	46/2756	
					47/2816	48/2876	49/2936	50/2996	51/3056	52/3116	
					53/3176	54/3236	55/3296	56/3356	57/3416	58/3476	
					59/3536	60/3596	61/3656	62/3716	63/3776	64/3836	
					65/3896	66/3956	67/4016				

Dimensions and weights

Size	Dimens	Dimensions (mm)											
	A2	H ₂	N ₇	S7	T _{1S} ^{±0.5}	T _{1min}	т	L _{max} ¹⁾	(kg/m)				
15	15	14.0	7.5	M5	28.0	10	60	4016	0.57				
20	20	19.0	9.0	M6	28.0	10	60	4016	0.98				
25	23	21.8	12.0	M6	28.0	10	60	4016	1.25				

1) One-piece guide rails

Accessories

Lube unit with sealing function DSE

- For ball and cam roller runner blocks
- Material: special polymer
- Acts as an end seal
- Relubricatable

Mounting instructions:

Before mounting the DSE, remove the seal unit by pulling it upward.

The required fastening elements are supplied along with the unit. Please order the lube nipple separately. The lube units are prefilled with ISO VG 1000 oil and therefore ready for mounting.

• Push the lube unit onto the guide rail and fasten it to the runner block.

Size	Part number	Dimension	Dimensions (mm)											
		A4	B ₅	Н	H_3	H_4	N ₈	N ₉	S ₈	(cm ³)				
15	R2030 125 00	31.7	11.5	24	19.4	0.4	4.5	5.0	M3	0.65				
20	R2030 825 00	43.2	13.0	30	24.3	0.4	5.0	5.0	M6	1.35				
25	R2030 226 00	47.2	14.0	36	30.0	3.4	7.6	6.1	M6	1.7				

Funnel-type lube nipple for size 15

Part number R3417 004 09

Part number R3417 029 09

Hydraulic-type lube nipple for size 20 and 25

Notes for mounting:

The lube nipples can only be mounted on the lube unit DSE.

Seal unit DE

- For ball and cam roller runner blocks
- All eLINE runner blocks are delivered
- with ready-mounted seal units
- Pre-oiled before shipment

Part number R3417 008 02

Size	Part number	Dimension	ns (mm)	Quantity per pac				
		A5	B ₆	H₅				
15	R2030 110 00	31.7	2.5	19.4	20			
20	R2030 810 00	43.2	2.8	24.3				
25	R2030 211 00	47.2	3.0	26.5				

Material: POM

Notes for mounting:

The seal unit cannot be mounted when the runner block is on the guide rail.

- Remove old seals by pulling them upward.
- Slide the seal unit (1) from above into the grooves on the end face of the runner block.
- Mount the runner block, pushing it off the mounting arbor (2) and onto the guide rail. The seal unit will align itself vertically relative to the guide rail.

Accessories

Cam roller with spigot

Cam rollers with central spigots R2040

For mounting customer-built carriages, with central spigot for zero clearance adjustment to the guide rail. For applications where even the versatile standard range does not offer the optimum solution to your problem.

- Travel speed up to 12 m/s
- Corrosion-resistant cam rollers per EN 10088

Size	Part number	Load capacit	ies (N)		Max. permissible loads (N)				
		Radial load		Axial load		Radial	Axial		
		С	Co	С	Co	F _{max}	F _{0max}		
15	R2040 100 00	470	275	235	138	160	30		
20	R2040 800 00	1310	750	655	375	400	110		
25	R2040 200 00	1340	750	670	375	400	110		

Size	Dimen	Dimensions (mm)													
	D ₁	D_2	D_3	D_5	D ₆	H ₁	H ₂	H ₄	H₅	SW4	(g)				
15	8	11	15	M4	6.2	5	6	13.9	16.5	3	9				
20	10	15	21.5	M5	9	7	8.5	16.0	19.5	4	19				
25	10	15	23	M5	9	7	8.5	16.0	19.5	4	20				

SW = width across flats (WAF)

Cam rollers with eccentric spigot R2040

For mounting customer-built carriages, with eccentric spigot for zero clearance adjustment to the guide rail. For applications where even the versatile standard range does not offer the optimum solution to your problem.

- Travel speed up to 12 m/s
- Corrosion-resistant cam rollers per EN 10088

Nut and washer included in the delivery.

Size	Part number	Load capacit	ies (N)			Max. permissible loads (N)					
		Radial load		Axial load		Radial	Axial				
		С	Co	С	C ₀	F _{max}	F _{0max}				
15	R2040 100 01	470	275	235	138	160	30				
20	R2040 800 01	1310	750	655	375	400	110				
25	R2040 200 01	1340	750	670	375	400	110				

Size	Dimensions (mm)														Weight			
	D ₁	D_2	D_3	D_4	D_5	D_6	H ₁	H ₂	H ₃	H_4	H₅	H ₆	H ₇	SW1	SW2	SW3	е	g
15	8	11	15	2.95	MЗ	6.2	5	6	6.0	13.9	16.5	2.4	0.5	5.5	1.5	2	0.45	9
20	10	15	21.5	4	M4	9	7	8.5	4.6	16.0	19.5	3.2	0.8	7	2	4	0.45	19
25	10	15	23	4	M4	9	7	8.5	4.6	16.0	19.5	3.2	0.8	7	2	4	0.45	20

SW = width across flats (WAF)

Accessories

Notes for mounting

- Using an Allen key (1), adjust cam rollers with eccentric spigot until you can feel that zero clearance has been reached.
- Tighten the hex nut to torque (see table for torque values) using a hex wrench (2), while using an Allen key (1) to prevent the spigot from turning.

Size	M _{max} (Nm)
15	1.5
20	2.0
25	2.0

Mounting example

Dimensions (mm)				
E _{3 ±0.2}	E _{4 ±0.2}	D7	H ₈	H ₉	H _{10 ±0.05}
25.65	14.4	13	4.0	2.5	13.0
34.65	19.7	15	3.0	3.0	17.7
37.80	24.2	15	3.0	4.0	19.6
	E _{3 ±0.2} 25.65 34.65 37.80	$\begin{array}{c c} E_{3 \pm 0.2} & E_{4 \pm 0.2} \\ \hline 25.65 & 14.4 \\ \hline 34.65 & 19.7 \\ \hline 37.80 & 24.2 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E _{3 ±0.2} E _{4 ±0.2} D ₇ H ₈ 25.65 14.4 13 4.0 34.65 19.7 15 3.0 37.80 24.2 15 3.0	E3 ±0.2 E4 ±0.2 D7 H8 H9 25.65 14.4 13 4.0 2.5 34.65 19.7 15 3.0 3.0 37.80 24.2 15 3.0 4.0

Manual clamping unit HK R2030 for eLINE profiled rail systems

Matching guide rails

- R2035
- R2037

Size	Part number	Holding force	Dimen	sions (nm)										
		_	A	В	С	н	H ₁	E ₁	E ₂	E ₃	L	L ₁	L_2	N ₃ ¹⁾	S ₂
15	R2030 142 82	130 N / 3 Nm	34	20	12.9	24	19.8	10	10	5.0	40	29.9	33.3	6	M3
20	R2030 842 82	250 N / 3 Nm	44	24	16.0	30	24.0	12	12	6.0	40	29.9	33.4	6	M4
25	R2030 242 82	330 N / 3 Nm	48	30	19.6	36	29.0	15	15	7.5	44	29.8	33.3	7	M6

1) Thread depth checked with screw

Bosch Rexroth AG Linear Motion and Assembly Technologies Ernst-Sachs-Strasse 100 97424 Schweinfurt, Germany Tel. +49 9721 937-0 Fax +49 9721 937-275 www.boschrexroth.com/brl

Australia

Bosch Rexroth Pty. Ltd. 3 Valediction Road Kings Park, NSW 2148, Sydney Tel. +61 2 9831 7788 Fax +61 2 9831 5553

Great Britain

Bosch Rexroth Limited Cromwell Road St. Neots, Huntingdon Cambs. PE19 2ES Tel. +44 1480 223 298 Fax +44 1480 470 789

Canada

Bosch Rexroth Canada Corp. 3426 Mainway Drive Burlington, Ontario L7M 1A8 Tel. +1 905 335-5511 Fax +1 905 335-4184

USA

Bosch Rexroth Corporation 14001 South Lakes Drive Charlotte, NC 28273 Tel. +1 800 REXROTH +1 800 739 7684 Fax +1 704 583 0523

Singapore

Bosch Rexroth Pte. Ltd. 15D Tuas Road 638520 Singapore Tel. +65 6861 8733 Fax +65 6861 1825

Your sales partner

Subject to technical modifications

© Bosch Rexroth AG 2008 Printed in Germany R310EN 2211 (2008.04) EN • BRL/MKT2