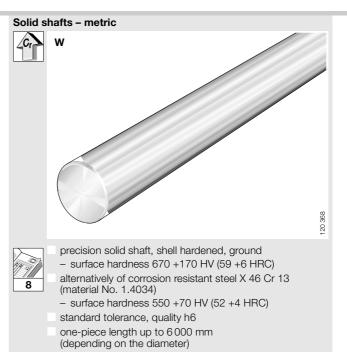


Solid Shafts and Hollow Shafts

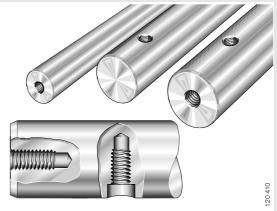
Technical Product Information TPI 79

Solid Shafts and Hollow Shafts

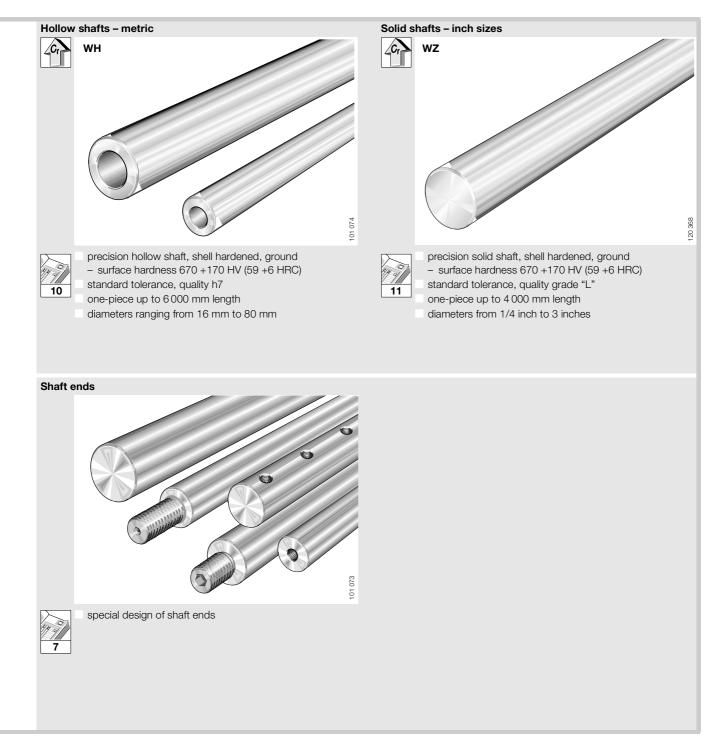

metric, inch sizes

	Pa	ge
Design and	I safety information	4
Accuracy		6
Spec. Special des	sign	7
Sample ord	ler and order code designation	7

Features


Shafts

- consist as standard of tempered steel with high surface hardness and low surface roughness
 - hardness and low surface roughness ensure ideal running characteristics
 - the uniform effective hardness depth ensures a continuous transition from the hardened surface layer to the tough core
 - the shaft core is soft (normalized), allowing it to absorb bending stresses
- possess a uniformly high quality standard thanks to comprehensive quality tests and strict test standards
- have high load carrying capacities
- are well suited for use as a precision raceway for linear ball bearings due to their high material quality, their dimensional and geometrical accuracy (roundness and parallelism) and their surface hardness and low surface roughness
- are also used as
 - guide rods for bushings
 - drawing and straightening rollers
 - shafts and axles in many applications
 - in the construction of fixtures and machines
- are manufactured
 - as solid shafts with metric and inch dimensions.
 Solid shafts are available with radial and axial threaded fixing holes (see *threaded holes* and *dimension table*)
 - as hollow shafts for lower-weight designs in metric dimensions
 - with flat ends with and without threaded holes
 - in one-piece lengths up to 6 000 mm; longer shafts assembled from several shafts available on request
- permit rigid, accurate, ready-to-mount and economical linear guidance systems with high load carrying capacities in combination with linear ball bearings, yoke type track rollers, ball type track rollers and ball type grooved profile track rollers.


diameters ranging from 4 mm to 80 mm

Threaded holes

radial and axial threaded holes for fixing precision solid shafts W

holes possible for shaft diameters from 8 mm to 80 mm

Solid Shafts and Hollow Shafts

metric, inch sizes

Design and safety information

Minimum hardening depth

In the case of Hertzian contact, a minimum hardening depth Ht must be met in addition to adequate surface hardness in order to ensure reliable functioning of the bearing arrangement:

- this is the case depth Eht for case hardening
- this is the surface hardening depth Rht for flame or induction hardening.

The required minimum hardening depth essentially depends upon:

- \blacksquare the rolling element diameter D_w
- the loading on the material
- the core strength of the material
- the hardening method.

Hardness curves

Figure 1 shows:

- the hardness curves for
 - flame or induction hardening $\ensuremath{\textcircled{}}$
 - case hardening @
- the curve of the required hardness ③

A steep hardness gradient, which can occur especially during flame or induction hardening, leads to expansion of the deformation zone with the same nominal hardening depth.

Minimum surface hardening depths

The minimum surface hardening depths Rht for INA shafts – depending on the shaft diameter – are specified in Table 1.

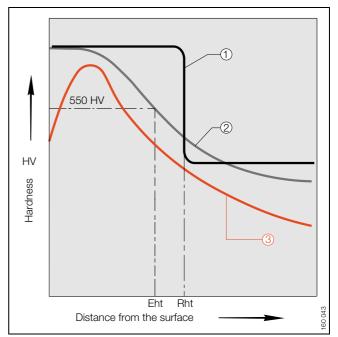


Figure 1 · Hardness curves

Table 1 · Surface hardening depths Rht according to ISO/TC 4/SC 11

Shaft diameter d _{LW} mm	Surface hardening depth Rht mm	
over	to	min.
_	10	0,4
10	18	0,6
18	30	0,9
30	50	1,5
50	80	2,2

Raceway hardness with special steels

In addition to the standard tempered-steel shafts, INA also supplies shafts of the following materials:

X 46 Cr 13 (material No. 1.4034)

X 90 CrMoV 18 (material No. 1.4112).

If these shafts are used as a raceway for linear roller bearings, the dynamic and static load ratings C and C_0 of the bearings are decreased due to the lower raceway hardness of the shafts.

Effective static and dynamic load ratings

The effective static and dynamic load ratings C_{0H} and C_{H} with reduced shaft hardness are calculated using (see equations):

- \blacksquare the static and dynamic hardness factors f_{H0} and f_H according to Figure 2 and
- the static and dynamic load ratings C₀ and C according to *dimension table* for the linear ball bearings.

 $C_{0H} = f_{H0} \cdot C_0$

 $C_H = f_H \cdot C$

 $C_{0H,}\ C_{H,}$ $\ N$ effective static and dynamic load ratings with reduced raceway hardness (shaft)

f_{H0}, f_H – static and dynamic hardness factor (Figure 2)

C₀, C Ν

static and dynamic load rating of the bearing.

Further information about the load carrying capacity is contained in INA publication LIF.

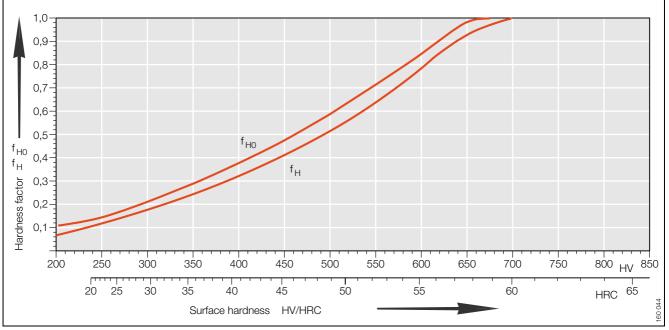


Figure 2 · Static and dynamic hardness factors with reduced raceway hardness

Solid Shafts and Hollow Shafts

metric, inch sizes

Quality grades

INA shafts are available in the quality grades stated in Table 2.

Table 2 · Quality grades of shafts

	, .			
Series designation	Shaft	Quality		
W	metric solid shaft	h6		
WH	metric hollow shaft	h7		
WZ	solid shaft in inch sizes	Grade "L"		

Length tolerances

Table 3 shows the length tolerances for shafts that are cut to length.

Table 3 · Length tolerances

Shaft length L mm		Tolerance mm					
over	to	max.					
_	400	±0,5					
400	1000	±0,8					
1000	2000	±1,2					
2000	4000	±2					
4000	6000	±3					

Chamfers at shaft ends

Both shaft ends are chamfered after the shafts are cut to length (Figure 3, Table 4), but the shafts are also available without chamfers.

Table 4 · Chamfer design

Shaft diameter d _{LW} mm	Chamfer x mm
$d_{LW} \leq 10$	1+1
$10 < d_{LW} \leq 30$	1,5 ⁺¹
30 < d _{LW} ≦80	2,5 ⁺¹

Roundness, parallelism, surface hardening depth

These values depend on the shaft diameter ${\rm d}_{\rm LW}$ and are listed in the dimension tables.

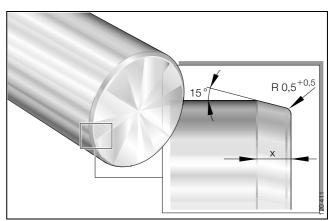


Figure $3 \cdot \text{Design of shaft ends}$

Special design

Special designs are possible on request:

- shafts of design type W consist of X 90 CrMoV 18 (material No. 1.4112)
- chrome-plated shafts
- shafts protected against corrosion with INA special coating Corrotect[®]
- unhardened shafts
- shafts with special heat treatment
 - e.g. hardness, effective hardness depth, hardening zones, hardening method
- shaft ends with (Figure 4)
 - ① axial thread
 - ② radial thread
 - ③ external thread and hexagonal socket
 - ④ reduced, smooth stud
 - ⑤ reduced, threaded stud
 - 6 profiled undercut
 - ⑦ milled surfaces and centering hole
 - Image: 8 milled surfaces and transverse hole

Sample order and order code designation

- metric solid shaft W
- shaft diameter d_{LW} 25 mm
- quality h6
- hole pattern for fixing bores 05
 - axial thread M8 (K₆ according to dimension table)
 - radial thread M8 (K7 according to dimension table)
 - distance $120 \times (C_4 \text{ according to dimension table})$
- length 2 000 mm.

Order code designation: W 25h6 05M8M8-120 \times 2000 (Figure 5).

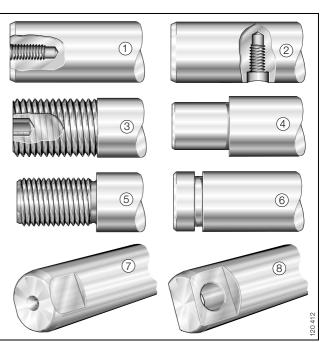


Figure 4 · Shaft ends -

special designs according to customer drawing

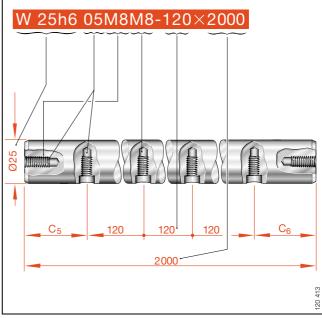
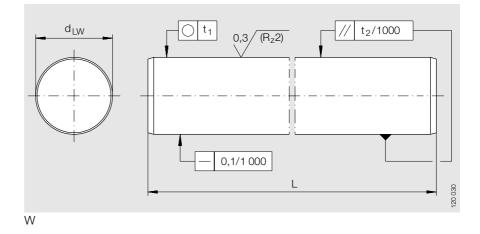



Figure 5 \cdot Sample order and order code designation

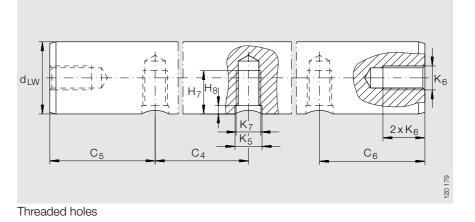
Solid shafts

metric

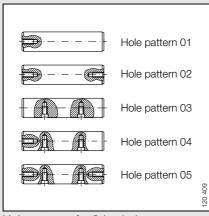
Design type W

Dimensi	on table · Dir	nensions i	n mm					_		-
Shaft Series diameter designation		Weight	Length	Materials ¹⁾		Tolerance	Roundness	Parallelism	Surface hardening depth	
				Tempered	Corrosion-res	istant steel ⁴⁾	h6	t ₁	t2 ²⁾	Rht ³⁾
				steel	X 46 Cr 13	X 90 CrMoV 18				min.
d _{LW}		kg/m	L _{max}				μm	μm	μm	mm
4	W 4	0,1	2 500	•	-	•	0- 8	4	5	0,4
5	W 5	0,15	3 600	•	-	-	0- 8	4	5	0,4
6	W 6	0,22	4 0 0 0	•	•	•	0-8	4	5	0,4
8	W 8	0,39	4 0 0 0	•	•	•	0-9	4	6	0,4
10	W 10	0,61	4 0 0 0	•	•	•	0-9	4	6	0,4
12	W 12	0,89	6000	•	•	•	0–11	5	8	0,6
14	W 14	1,21	6000	•	•	•	0–11	5	8	0,6
15	W 15	1,37	6000	•	•	•	0–11	5	8	0,6
16	W 16	1,57	6000	•	•	•	0–11	5	8	0,6
17	W 17	1,78	6000	•	-	-	0–11	5	8	0,6
18	W 18	1,98	6000	•	•	•	0–11	5	8	0,6
20	W 20	2,45	6000	•	•	•	0–13	6	9	0,9
24	W 24	3,55	6000	•	•	•	0–13	6	9	0,9
25	W 25	3,83	6000	•	•	•	0–13	6	9	0,9
30	W 30	5,51	6000	•	•	•	0–13	6	9	0,9
32	W 32	6,3	6000	•	•	•	0–16	7	11	1,5
35	W 35	7,56	6000	•	-	-	0–16	7	11	1,5
40	W 40	9,8	6000	•	•	•	0–16	7	11	1,5
50	W 50	15,3	6000	•	•	•	0–16	7	11	1,5
60	W 60	22,1	6000	•	•	•	0–19	8	13	2,2
80	W 80	39,2	6000	•	•	•	0–19	8	13	2,2

Shafts consist of tempered steel as standard. Corrosion-resistant steels only on request or as a special design.


²⁾ Measured diameter variation.

³⁾ According to DIN 6773-3.


⁴⁾ Reduction in load rating for linear ball bearing due to lower shaft hardness (see *Raceway hardness with special steels*, Page 5).

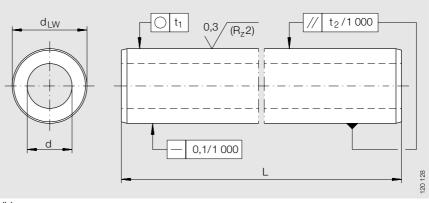
Recommended threaded holes

for shafts W

Dimensi	on tab	le · Dir	mensio	ns in n	nm						-								
Series	Axial thread							Radial thread											
desig- nation ¹⁾											Dime	nsions							
hation	К ₆										C ₄			C _{5 mi} Hole	n ²⁾ , C _{6 min} ²⁾ pattern	H ₇	H ₈	К ₅	K ₇
														03	04–05				
W 8	M3	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
W 10	M3	M4	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
W 12	-	M4	M5	-	-	-	-	-	-	-	75		120	10		7	2	5	M4
W 14	-	M4	M5	M6	-	-	-	-	-	-	-	-	-	-		-	-	-	-
W 15	-	-	M5	M6	M8	-	-	-	-	-	-	-	-	-		-	-	-	-
W 16	-	-	M5	M6	M8	-	-	-	-	-	75	100	150	15		10	2,5	6	M5
W 18	-	-	-	M6	M8	M10	-	-	-	-	-	-	-	-		-	-	-	-
W 20	-	-	-	-	-	-	-	-	-	-	-	-	150	15		12,5	3	6	M5
W 20	-	-	-	M6	M8	M10	-	-	-	-	75	100	150	15		11	3	7	M6
W 24	-	-	-	-	M8	M10	M12	-	-	-	-	-	-	-		-	-	-	-
W 25	-	-	-	-	-	-	-	-	-	-	-	-	150	15	see	15	3	7	M6
W 25	-	-	-	-	M8	M10	M12	-	-	-	75	120	150	15	footnote ³⁾	15	3	9	M8
W 30	-	-	-	-	-	-	-	-	-	-	-	-	150	15		15	3,5	7	M6
W 30	-	-	-	-	-	M10	M12	M16	-	-	100	150	200	20		17	3,5	11	M10
W 32	-	-	-	-	-	M10	M12	M16	-	-	-	-	-	-		-	-	-	-
W 40	-	-	-	-	-	M10	M12	M16	-	-	150	200	300	20		25	4	11	M10
W 40	-	-	-	-	-	M10	M12	M16	-	-	100	-	-	20		21	4	13	M12
W 50	-	-	-	-	-	-	-	-	-	-	-	-	150	20		19	4	11	M10
W 50	-	-	-	-	-	-	M12	M16	M20	-	-	200	300	20		21	4	13	M12
W 50	-	-	-	-	-	-	M12	M16	M20	-	100	-	-	20		25	4	15	M14
W 60	-	-	-	-	-	-	-	M16	M20	M24	-	-	-	-		-	-	-	-
W 80	-	-	-	-	-	-	-	M16	M20	M24	-	-	-	-		-	-	-	-

¹⁾ See Page 8 for dimensions.

 $^{2)}$ C_5 and $\rm C_6$ depend on the shaft length.


³⁾ Take the axial thread into account for designs with hole patterns 04 and 05 (see Figure *Hole patterns for fixing holes*): $C_{5 \text{ min}} = C_{6 \text{ min}} = 3 \times K_6 + K_7.$

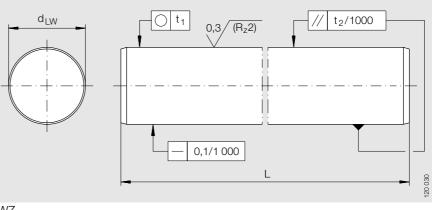
Hole patterns for fixing holes

Hollow shafts

metric

Design type WH

WH


Dimensior	Dimension table · Dimensions in mm												
Outside diameter	Series designation	Weight	Length	Inside diameter	Materials Tempered steel	Tolerance	Roundness	Parallelism	Surface hardening depth				
			L	d ¹⁾		h7	t ₁	t2 ²⁾	Rht ³⁾				
									min.				
d _{LW}		kg/m				μm	μm	μm	mm				
16	WH 16	1,28	6 000	7	•	0–18	5	8	0,9				
20	WH 20	1,25	6 000	14	•	0–21	6	9	0,9				
25	WH 25	2,35	6 000	15,6	•	0–21	6	9	0,9				
30	WH 30	3,5	6 000	18,2	•	0–21	6	9	0,9				
40	WH 40	4,99	6 000	28,1	•	0–25	7	11	1,5				
50	WH 50	9,97	6 000	29,7	•	0–25	7	11	1,5				
60	WH 60	14,2	6 000	36	•	0–30	8	13	2,2				
80	WH 80	19,5	6 000	56,9	•	0–30	8	13	2,2				

Wall-thickness tolerance of the starting material ±4%.
 Measured diameter variation.
 According to DIN 6 773-3.

Solid shafts

inch sizes

Design type WZ

۱	۸	r	7
1	/ \	Ι.	/

Dimensi	ion table $\cdot D$	imensions in n	nm							
Shaft diameter		Series designation	Weight	Length ⁵⁾	Materials ¹⁾		Tolerance	Roundness	Parallelism	Surface hardening depth
d _{LW}				L _{max}	Tempered steel	Corrosion- resistant steel ⁴⁾	Grade "L"	t ₁	$t_2^{(2)}$	Rht ³⁾
						X 46 Cr 13				min.
inch	mm		kg/m				μm	μm	μm	mm
1/ ₄	6,35	WZ 04	0,25	4 000	•	-	-13-25	4	5	
³ / ₈	9,525	WZ 06	0,56	4 000	•	•	-13-25	4	6	
¹ / ₂	12,7	WZ 08	0,99	4 000	•	•	-13-25	5	8	
5/ ₈	15,875	WZ 10	1,55	4 000	•	•	-13-25	5	8	
³ / ₄	19,05	WZ 12	2,24	4 000	•	•	-13-25	6	9	
7/ ₈	22,22	WZ 14	3,05	4 000	•	-	-13-25	6	9	
1	25,4	WZ 16	3,97	4 000	•	•	-13-25	6	9	
1 ¹ /8	28,575	WZ 18	4,11	4 000	•	-	-13-25	7	11	
1 ¹ / ₄	31,75	WZ 20	6,22	4 000	•	•	-13-25	7	11	
1 ³ /8	34,95	WZ 22	7,51	4 000	•	-	-15-28	7	11	
1 ¹ /2	38,1	WZ 24	8,95	4 000	•	•	-15-28	7	11	
2	50,8	WZ 32	15,91	4 000	•	-	-15-33	7	11	
2 ¹ / ₂	63,525	WZ 40	24,85	4 000	•	-	-18-38	8	13	
3	76,225	WZ 48	35,79	4 000	•	-	-20-43	8	13	

Shafts consist of tempered steel as standard. Corrosion-resistant steels only on request or as a special design.

²⁾ Measured diameter variation.

 $^{\mbox{3}\mbox{)}}$ According to DIN 6773-3.

⁴⁾ Reduction in load rating for linear ball bearing due to lower shaft hardness (see *Raceway hardness with special steels*, Page 5).

⁵⁾ Longer lengths available on request.

INA Lineartechnik oHG

Postfach 15 45 66406 Homburg (Saar) · Germany www.ina.com Germany: Phone 0180/5003872 Fax 0180/5003873 Other Countries: Phone +49/6841/701-100 Fax +49/6841/701-625